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ABSTRACT

A technique for quantitative description of radiowave scattering

structure in the disturbed auroral ionosphere is developed in this

work. Application is made by means of multi-spacing interferometric

observations of a radio star. The work is based on the observed fact

that sufficient scattering causes a measurable decrease in correlation

of output voltages from neighboring antennas. Such correlation

decreases ame called visibility fades herein and have been called long-

duration fades and radio-star fadeouts by other workers.

Random noise theoz-] is employed, and it is assumed that the

angulam spectrum of the source, as received at the ground after scat-

tering_ is randomly phased. However, the usual assumption of a

gaussian autocorrelation function to describe the scattering structure

is cimcumvented, and provision is made for the existence of quasi-

periodic stmucture. Further, the usual assumption of weak (single)

om strong (multiple) scatter is avoided. The statistical character-

istics of amplitude, phase, and complex signal are developed for the

general case of arbitrary degree of scatter, using a numerical method.

The technique is applied to observations with phase-switch and

phase-sweep interferometers, yielding two important parametems of

the received wavefPont, the coherence ratio and The wavefront auto-

correlation function. The coherence Patio is defined as the matio

of nonscattered to scattered flux received from the source. The

wavefront autocorPelation function is defined as the spatial



autocorrelation function of the scattered portion of the (complex)

wavefront.

Two quantities which describe the ionospheric scattering region

are obtained from the coherence ratio and wavefront autocorrelation

function. First, the optical depth of the region (considered as a

purely scattering medium) is determined from the coherence ratio.

Second, the ionospheric structural autocorrelation function is

established jointly from the wavefront autocorrelation function and

the optical depth, yielding a statistical description of the average

size and idealized shape of the ion-density irregularities which

produced the scattering.

Forty-nine visibility fades observed at College, Alaska,

between November of 1964 and February of 1965, inclusive, are

analyzed. A majority of the fades revealed optical depths in excess

of unity at 68 MHz. Optical depth is numerically equal to mean-

square fluctuation in radio-frequency phase across a plane at the

base of the scattering region, so the fades were characterized by

rms phase deviations in excess of one radian at 68 MHz. An approx-

imately inverse-square dependence of optical depth on frequency was

obtained from simultaneous observations at 68, 137, and 223 MHz,

At 68 MHz, tri-spacing observations were carried out on east-

west baselines of Ii0 meters (25 k ), 220 meters (50 A), and 330

meters (75 _ ). The observations seldom were consistent with the

demands of a gaussian autocorrelation function, as is commonly

assumed. Rather, the disturbed auroral ionosphere displays
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evidence of quasi-periodic structure in the dimensional range of tens

and hundreds of meters. The structure observed is comparable in size

to auroral rays.

While most of the observations were consistent with the assumption

of a randomly phased angular spectrum, a significant minority was not.

Quantitative results could not be obtained in these instances, and

they imply the existence of highly developed quasi-periodicity.

Theoretical work is needed to bridge the gap between quasi-periodic

structure in the sense of random-noise theo_ and strict periodicity.

Narrow-beamphotometers were mounted on one of the interferometer

antennas tracking the radio star. Auroral luminosity was recorded

along the line of sight duming 100% of the visibility fades which

occurred at night under clear-sky conditions and during many night-

time fades which occurred under cloudy conditions. Thus, VHF radio-

star visibility fades in the aumoral zone result from scattering

by irregulamities directly associated with auroral forms, at least

at night.
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PREFACE

This report presents, in two volumes, work carried out at the

Geophysical Institute under a NASA research contract, NAS5-3940, and

an NSF grant, GP-947. It deals with radiowave scattering in the auroral

ionosphere under disturbed conditions. Volume l, containing Chapters I

through III, presents some theoretical aspects of ionospheric scatter-

ing and its observable result at the ground. Volume 2, containing

Chapters IV through VI, describes an experiment for ascertaining certain

parameters of ionospheric structure and presents results of the experi-

ment and conclusions to be drawn therefrom.

The fundamental aspects of this report represent research carried

out under the Institute's IQSY program, funded by the NSF grant.

Reports and papers by other authors describe work on four other problems

of high-latitude geophysics carried out under the same program.

The experimental results herein reported provide a basis for more

applied research aimed at describing effects of ionospheric scattering

on satellite communications in the auroral zone. This aspect of the

work was carried out under the NASA research contract. In this report,

attention has been focused on certain severe scatter events - called

"radio-star visibility fades" - which are of scientific interest in

their own right and which represent the most severe ionospheric condi-

tions a satellite communications system may be expected to encounter.

Investigations of scattering under less disturbed conditions - as

manifested by scintillation of radio-star and satellite signals -

will be described in the final report of contract NAS5-39#O.
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A considerable portion of Volume 1 of the present report is devoted

to a detailed review of previous theoretical work by one man, E. N. Bramley.

The concepts developed by Bramley are fundamental to the theoretical

considerations underlying the experiment. The author found a thorough

understanding of Bramley's work essential before progress could be made

on interpretation of observations. Accordingly, much of Chapters II

and III represent merely foundations for generalization of Bramley's work.

The reader who is familiar with Bramley's work on spaced-aerial

reception of scattered waves and with the work by Rice on signal statis-

tics, which underlies Bramley's considerations, probably will find that

much of sections IIC, IIDI, and IID2 may be omitted. Such a reader also

will find the concepts discussed qualitatively in section IIA to be

familiar. The reader unfamiliar with these concepts and with Bramley's

work probably will find the above-mentioned sections necessary for

understanding section IID3, which is a generalization of Bramley's work.

It is this generalization which allows experimental determination of

quantitative results concerning the disturbed auroral ionosphere.

In Chapter III, the reader who has worked actively on the problem

of ionospheric scatter again will find many familiar concepts. In

pamticular, the reader who is thoroughly familiar with Bramley's work

on scattering, per se, as opposed to observational considerations, may

omit sections D1 and D2. Sections D3 and D4 represent generalizations

on this work. Related work is reviewed and generalized very simply in

section IIIC. The other sections of Chapter III are essentially reviews

of well-known concepts, applied to the experimental problem attacked in

later chapters. The genepalizationa achieved in Chapter III allow
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relaxation of assumptions, which were previously necessary, concerning

the natume of ionospheric irregularities.

The experimental work reported in Volume 2 involved the efforts of

several people. Salient among these were Mr. R. C. Domke and

Mr. W. O. Starner. As electronic technicians at the Geophysical Insti-

tute_ they contributed a great deal of time and ability to development

of the experimental apparatus and to gathering of data. Contributions

were made by Mrs. Nita Balvin and Mrs. Carolyn Grover in the scaling

and reduction of data.

The active cooperation of Mr. J. M. Lansinger is gratefully acknowl-

edged. The reliable and versatile phase-sweep interferometer developed

under his direction at Boeing Scientific Research Laboratories in Seattle

lay at the heart of the experiment. The author is further indebted to

Mr. Lansinger for data reduction of the phase-sweep observations and

for making available the computer facilizies of the Boeing Company, as

part of a joint IQSY effort by BSRL and the Geophysical Institute.

Thanks go also to Dr. Leif Owmen, who initiated the research program

which led to the work reported herein and who served as a consultant to

the project under the NASA research contract.

The cover photograph, showing an auroral drapery silhouetting one

of several radio telescopes used at the Geophysical Institute for radio-

star observations, was taken by Dr. V. P. Hessler.
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CHAPTER I

SURVEY OF STUDIES OF IONOSPHERIC IRREGULARITIES

IA EARLY STUDIES

The irregular structure of the terrestrial ionosphere is perhaps

its most long-standing unexplained major observed feature. The dis-

covery of the ionosphere, whose existence had been inferred by Balfour

Stewart as early as 18781 , is usually dated as 1901, the year of

Marconi's first transatlantic wireless transmission. In 1902, Kennelly

and Heaviside independently postulated the existence of a high-

atmospheric conducting layer to explain Marconi's success. There

followed nearly a quarter century of theoretical and experimental

work aimed at proving or disproving the existence of such a layer.

This early work yielded results, such as development of the magneto-

ionic theory, which were later to be of fundamental importance to

the study of the ionosphere and to its utilization for long-distance

radio communications. Yet, throughout this period, there was doubt

as to the ionosphere's very existence. Obviously, descriptive

ionospheric research had not yet begun.

It was in 1925 that Appleton and Barnett clearly received a

component of BBC transmissions propagating downward after reflection

from the ionosphere. Immediately thereafter, a number of workers em-

ployed upward directed antennas. Notable among these were Breit and

Tuve, who in 1926 employed pulse modulation in the first ionospheric

sounder. Now the job of describing the i_nosphere could and did begin

iKels_____o(196W) c_edits Gauss with a still earlier suggestion, made in 1839.

-l-



2

in earnest. By the time of the second International Polar Year, 1932-33,

many of the major features of the ionosphere were known and some were on

their way to explanation. The normal E and F layers were recognized and

their equivalent heights were established. Some knowledge existed about

the seasonal and diurnal variations of the E and F ionization maxima at

middle latitudes. Chapman already had developed his theory on the ioniz-

ing effect of monochromatic radiation incident on the atmosphere. This

theory proved capable of explaining a remarkable number of the observed

characteristics of the "regular" ionosphere.

As early as 1930, Appleton observed effects of irregular ionospheric

structure. Still today, however, there is no comprehensive theory to

explain the existence of localized irregularities of ionization. The

abnormal E region ionosonde returns which Appleton had observed have since

become known as sporadic E, and the phenomenon received considerable at-

tention during the second Polar Year. Much has been learned about it

since, but most present-day ionospheric physicists probably still would

add "amen" to the statement ofA_pleto___._n,Naismith and Ingram (1937) that

"we feel that a completely satisfactory explanation of its occurrence on

all occasions is still lacking."

While the earliest sporadic E traces reported in the literature were

regarded as abnormal, there was no reason to interpret them as being pro-

duced by a spatially irregular reflecting region. One of the most direct

early observations of ionospheric irregularities, as the term generally

is used today, was reported by Eckersley (1937). Eckersley observed

"momentary ionospheric echoes from irregular heights, occasionally as low

as 60 km, but generally between I00 and 300 km," and commented that "we
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can scarcely avoid the conclusion that the echo signals are not regularly

refracted from a uniform layer in the ionosphere but are scattered from

irregularities or clouds." Earlier instances of "lateral deviation" of

radio signals reported by Ratcliffe and Pawsey (1933) probably were caused

by scattering from similar but longer-lived ionospheric irregularities.

It appears that Pawsey actually observed drifts of such irregularities as

early as 1935, using spaced receivers (Ratcliffe, 1956).

One of the most commonly observed effects of ion-density irregular-

ities is the spreading of ionosonde F-layer traces, the so-called spread-F

phenomenon. To some extent, spread F has been considered a nuisance in

the routine scaling of ionosonde records fop F-layer parametePs such as

virtual height and cPitical fPequency. As a consequence, many modern

sounders have been adjusted in such a manner as to decPease theiP utility

fop studying the irPegular structure of the F layer. Still, a consider-

able amount of effort has gone into study of the spread-F phenomenon

itself. The first such effort appears to have been that of Booker and

Wells (1938), who interpreted spPead-F ionosonde returns in terms of

Raylelgh scattePing by spatial iPregularities in the F layer.

Not suPprisingly, little progress in describing ionospheric irregu-

laPitles was reported in the open litePature duping the years of World

War II. E-layer irregulaPities were considered by Eckersley (1939) and

by Eckersley, Millington and Cox (19W_), however, in explaining a number

of signal propagation modes. Immediately afteP the waP, exploPation of

ionospheric structure received renewed attention and the benefit of war-

time advances in radio technology. Well._.___s,Wat___tsand George (1946) re-

ported ob-_ervations of Papldly moving irregularities in the F region
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during a magnetic storm, using a new ionosonde with increased time reso-

lution. They attributed the irregularities to an influx of extraterres-

trial particles and interpreted the motions as being downward from great

heights into the F layer. However, their method allowed measurement only

of range change and not of the angle of motion. Postwar radio and radar

techniques of considerable variety led to ever increasing observations of

various types of irregular ionospheric structure. While they did not

produce a comprehensive understanding of the structure, the expanded

numbers and types of observations did begin to reveal the complexity of

the problem.

From advances in the statistical description of electrical signals,

was born a series of theoretical studies which allowed more effective use

of the new wealth of observational material. One of the first papers in

this vein was by Ratcliffe (1948), in which it was suggested that "if the

roughness of the ionosphere is supposed to vary in a random manner, then

the salient phenomena of the fading of a single wave can be explained."

This paper explored the observations to be expected from a vertical-

incidence sounder due to "diffractive reflexion" from randomly placed

scattering centers, which were assumed to be in random motion. The paper

applied to the ionospheric problem the work of Furth and MacDonald (1947)

on the statistics of random noise signals.

Of more general application were - and continue to be - the funda-

mental papers on analysis of random noise by Rice (1944, 1945). An

important feature of Rice's work is that it included the case of a sinu-

soidal signal in the presence of noise. McNicol (1949) recognized the

importance of this case to the problem of ionospheric reflection which
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includes a specular component as well as scattered components. He applied

Rice's work to nor_nal-lncidence and oblique-incidence receptions at a

single point, determining the ratio of specularly reflected to scattered

power. By applying also the work of Booke_..__m,Ratcliffe and Shinn (1950),

then in the process of publication, he was able to calculate an effective

velocity of the ionospheric irre_dlarities responsible for the signal

fading which he observed. Working with a single receiver, however,

McNicol was not able to ascertain whether his effective velocity measured

an ordered ionospheric drift, a random motion of irregularities or a

combination of the two.

As important as Rice's results to the problem of ionospheric scat-

feting was work by Booker and Clemmow (1950), which generalized the con-

cept of a polar diagram to that of an angular spectrum of plane waves.

This generalization allowed familiar Fourier transform techniques to be

brought into play. A mamriage of the statistical concepts of Rice and

the Fourier techniques of Booker and Clemmow brought forth the funda-

mentally important paper of Booker, Ratcliffe and Shinn (1950).

Booker, Ratcliffe and Shinn, in basing their work on the derivations

of Booker and Clemmow, stated their considerations within the context of

diffraction processes. To some extent such a context tends tacitly to

introduce unnecessary restrictions on application of the results. The

term diffraction brings to mind a discontinuous medium, with significant

changes in transmission parameters taking place in the propagation direc-

tion within distances comparable to the observing wavelength. In point

of fact, no such restriction exists in the work. The derivation of the

angular spectrum starts_rith consideration of an imregular electromagnetlc
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wave-field assumed to exist without statement of its originating mecha-

nism. Thus, any form of scattering which can produce an irregular wave-

field and an associated angular spectrum can be examined with the mathe-

matical tools provided by this paper. Several workers have used the

tools to attack the problem of scattering by an inhomogenous, phase-

changing medium - a process which might descriptively be called differ-

ential ref-_action, but which, by and large, has continued to be called

diffraction. The situation is similar to use of the term reflection to

descmibe the return of radio signals from the ionosphere. Except for

the lowest frequency radio waves, the term refraction more accurately

describes the physical process involved, but the two terms ape used

somewhat interchangeably.

Immediately after publication of the work by Booker, Ratcliffe and

Shinn, a number of papers appeared which restated, simplified, and ex-

Tended its results and underlying concepts and applied them to experi-

mental problems. The experiments performed on this basis generally fell

into three classes: single-receiver measurements carried out on iono-

spherically returned, man-made signals; spaced-receiver measurements of

similar signals; and measurements carried out on signals received from

radio stars. Representative of the first type of work was that reported

by McNicol (1949), mentioned above. The considerable amount of informa-

tion available from spaced-receiver measurements based on the results of

Booker, Ratcliffe and Shinn was described in a rather complete treatment

by _s, Phillips and Shinn (1950).
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IB INTRODUCTIONOFRADIOASTRONOMICALTECHNIOUES

The above-mentioned single-receiver and spaced-receiver methods both

depend upon return from the ionosphere, by one or several possibly com-

plicated propagation modes, of a signal transmitted from the earth. Dis-

covery during the 1940's of discrete extraterrestrial radio sources, the

so-called radio stars, led to an alternative meansof investigation in

which the basic propagation modeis simple transmission through the iono-

sphere. Some of the earliest observations of the strong source in

Cygnus - Cyg A - revealed irregular fluctuations in the strength of /he

received signal (Hey, Parsons and Phillips, 19_6; Bolton and Stanley,

1948). The fluctuations in the received intensity of Cyg A and of the

stronger source discovered by Ryl..__eandSmith (1948) in Cassiopeia -

Cas A - became the subject of considerable investigation.

Simultaneous observations at Cambridge and Jodrell Bank by Smith

(1950) and Little and Lovell (1950) showed no correlation for most of

the variations, demonstrating that they were not inherent in the radio

sources. The latter authors carried out spaced receiver measurements on

baselines of i00 meters and 3.9 kilometers and concluded that the flucua-

tions originated near the earth. They suggested as a mechanism a process

analagous to the twinkling - or scintillation - of optical stars, due, in

the radio case, to localized electron clouds in the F region.

The almost simultaneous appearance of the theoretical work on random

scatteming by Booker, Ratcliffe and Shinn and the experimental conclusions

of Little and Lovell led immediately to application of the tools of radio

astronomy to ionospheric physics. Perhaps the earliest paper _eporting

work which might be termed ionospheric radio astronomy was one by Ryle
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an___dHewis______h(1950). Carrying on from the suggestion of Little and Lovell

that radio-stam scintillations might be caused by phase variations suf-

fered during passage through F-layer ionization irregularities, Ryle and

Hewish established the diurnal variation of scintillation intensity and

compared it with that of spread F. They found that, as for mid-latitude

spread F, the scintillations which they observed in England represented

a nighttime phenomenon. They found a cross-correlation coefficient be-

tween indices of the two phenomena of between 42 and 45 pemcent. From

this result they concluded that Padio-staP scintillations and spread F

ape related (at middle latitudes) and that the two may be caused by the

same F-layer irregularities.

That radio astronomical observations could effectively supplement

the oldeP methods of ionospheric measuPement was demonstPated in consid-

eration of the diurnal variations of spread F and scintillation. In the

case of spPead F, it was not known whether the scattePing imregulaPities

themselves displayed a diurnal variation of occumPence or Pather existed

mound the clock, being masked duping the day by Peflection from a normal

F layeP below them. Since a radio star signal necessaPily tPaverses the

entire ionosphere, the obsePved diurnal vaPiation of scintillation is a

diPect indication of the diurnal behavioP of the scattePing iPregulaPities.

The instPumentation developed fop Padio astPonomical obsePvation also

supplements that of the earlier ionospheric techniques. In paPticular,

having a need fop high angular Pesolution in obsePving discrete celestial

Padio souPces, radio astronomePs introduced the radio interferometeP (Ryle,

1950). FPom one point of view, the radio intePfePometeP is an extension

of the spaced recelvePs used eaPliepby ionospheric researchers (although
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the development was by analogy with an optical instrument, the Michelson

steller interferometer). The extension involves retaining phase coherence

between the two receivers by using a common local oscillator and adding

the intermediate-frequency signals so that the resultant depends upon the

phase difference between the two received signals. At the expense of

losing discrimination between ordered drift and random change of the

amplitude pattern on the ground, the instrument permits observation of

the phase as well as the amplitude of the irregular wavefront arriving

from the ionosphere.

That the phase distribution of the wavefront contains ionospheric

information not available in the amplitude distribution alone was demon-

strated by Hewish (1951) in his extension of the work of Booker, Ratcliffe

and Shin__.__n(1950)for the case of a structured phase-cnangin E ionospheric

layer. From measurements involving both the amplitude and phase of the

wavefront, R_yle and Hewish (1950) and Hewish (1951) concluded that iono-

spheric structure with a horizontal scale of a few kilometers and con-

sisting of less than one percent variation in the phase path thickness of

the ionosphere could explain their observed scintillations.

Carrying out a somewhat more extensive program of amplitude observa-

tions, Little and Maxwell (1951) also found scales of a few kilometers and

a close association with spread F. In addition, using the radio star

Cygnus A, they found scintillation amplitude to be very nearly proportional

to atmospheric path length when the line of sight traversed the mid-latitude

ionosphere but to increase sharply when the source was viewed through the

auroral-zone ionosphere.

Meanwhile, Hewish (1952) w-as_xtending the observational program
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ceivers and a greatly improved interferometric instrument, the phase-

switch interferometer (Ryle, 1952). He found that many of his observa-

tions could be explained by the drift of otherwise fairly stable iono-

spheric structure, mainly along east-west lines. The scales which he

deduced averaged about five kilometers, and the ionospheric drift

velocities ranged generally between i00 and 300 meters per second. He

found a clear relationship between the velocity and geomagnetic activity.

Devising a means of deducing the height of the irregularities from simul-

taneous measurements of amplitude and phase fluctuations, he estimated

the height at about 400 kilometers.

Hewish's considerable success in deducing certain characteristics of

the sclntillation-producing irregularities was limited by two simplifying

assumptions in his theoretical work. First, following Boqker, Ratcliffe

and Shinn (1950), he worked within the context of a thin defracting screen,

which allowed very little consideration of the scattering process actually

taking place in the ionosphere. Essentially, Hewish had to postulate a

wavefront containing deviations in phase immediately below the scattering

layer. He then analyzed what happens to the wave in subsequent propagation

to the g_ound. Second, Hewish emphasized the special case of small phase

deviations (less than one radian variation across the screen). While mcst

of Hewish's observations met the requirements for this special case, we

shall see later that generalization is required for discussion of certain

scatter events, particularly in the auroral zone.

In an ambitious and significant theoretical work, Fejer (1953) seems

to have made the first step towal_ considering a scattering medium of
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Beater physical plausibility, namely a thick slab containing irregular

variations in refractive index. In this work, Fejer made use of various

methods and concepts previously used in analysis of radio-wave scattering

by tropospheric turbulence (Booker and Gordon, 1950), sound-wave scat-

tering by small random variations in refractive index (Ellison, 1952),

and scattering of x-rays by particles larger than the wavelength (Dexter

and Beeman, 1949). Fejer's analysis included an extension of the work of

Booker, Ratcliffe and Shinn by considering the case of a thin screen with

irregular structure in two dimensions rather than in one. More fundamen-

tally, he went on to consider also the case of a thick scattering region

with three-dimensional irregularities in refractive index.

In considering the thick-slab case, Fejer first made the simplifying

assumption that scattering takes place only from the incident wave - i.e.,

he first considered the case of single scatter. In this case, Fejer's

results are essentially the same as those of Booker and Gordon (1950) ex-

cept for choice of a physically more realistic autocorrelation function

to describe the random nature of the irregular dielectric through which

the wave passes. The most significant advance made by Fejer's paper was

his analysis of multiple scattering by a thick layer having an irregular

dielectric constant. For this important case, Fejer worked out the

angular spectrum and the autocorrelation function of the scattered wave

for a thick medium containing spherically symmetric irregularities. Thus

Fejer overcame the first of the two limitations of Hewish's earlier work.

Fejer was able to discuss the physical significance of Hewish's other

limitation - namely, the special case of small phase deviations. He showed

that if the slab were sufficiently th_n and/or its dielectric i_regularities
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sufficiently weak, then the conditions of Hewish's special case would be

met. Ouantitatively, these conditions commespond to a scattering layer

which allows a fraction of the incident power, equal to or greater than

about e-I, to emerge unscattemed. MoPe generally, Fejem showed that the

mean-square phase deviation imposed on the wavefront by the screen is

equal to the thick-slab parameter which he called "the effective depth

of scattering." This latter parameter was given by Fejer as

z

[°B° = A dz

o

wheme z is the thickness of the slab and A is the fraction of flux
O

scattered from an incident beam by a unit thickness of the slab.

Further consideration of the melationship between Fejer's thick-

slab model and the thin diffractin E scmeen assumed by Hewish and by

Booker, Ratcliffe and Shinn was cammied out by Bmamley (195_). The

primary goal of Bmamley's short paper was to show "that the angular

spectrum, as demived by considerations of multiple scattering, for

transmission through a thick stratum containing nommally distmibuted

and statistically isotropic imregulamities of dielectric constant with

autocorrelation function of the form exp (-r2/12), can equally well be

evaluated by considering an equivalent thin phase-changing screen."

This he did, and the relationship between a thick scattering layer

and an equivalent thin screen, which he elucidated, is useful. Theme

is a danger, however, in thinking in temms of the equivalent screen

mathem than in terms of the mope mealistic thick layer. It is often

convenient fmom an obsemvational point of view, but it tends to draw
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attention away from the ionospheric phenomenawhich are, after all, the

final goals of this whole endeavor. It is to be noted, happily, that

Bramley did not fall into his own trap. We shall have occasion in Chap-

ter II to examine more of his work in detail (Bramley, 1951, 1953, 1955).

IC WORK DURING AND SINCE THE IGY

Much of the work described in the foregoing, as well as the results

of other workers, was summarized in an excellent review paper by Ratcliffe

(1956). Since Ratcliffe's review, investigations of irregular ionospheric

structure have been extended greatly. The International Geophysical Year

accelerated experimental investigation in this field as in all branches

of geophysics. Regarding ionospheric irregularities, the IGY left pri-

marily a two-fold experimental legacy. First, the standard instruments

of the ionospheric physicist - in particular, the ionospheric sounder -

were deployed around the world. Second, new techniques were introduced -

most notably techniques employing artificial earth satellites.

The very existence of artificial satellites in orbit about the earth

and transmitting back to it provides a powerful technique to complement

the radio astronomical methods. Just as the signals received from radio

stars scintillate due to scattering in the ionosphere, so do signals re-

ceived from satellites orbiting above the scattering layer. Clearly the

relatively fast-moving satellites can be applied in combination with the

slower natural radiators for descriptive studies of certain spatial and

temporal characteristics of ionospheric irregularities. When rapid

advances in miniaturization of electronic circuits allowed placement of

ionospheric sounders themselves in orbit, another new and at least equally

powerful technique was made available - that of "topside sounding."
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Ionospheric scattering layers can nowbe observed from above as well as

from below.

The tremendous numberof observational data madeavailable during

and after the IGY gave impetus to new theoretical investigations, as is

to be expected. On the whole, the theoretical work took a somewhat dif-

ferent turn from the majority of that carried out before Ratcliffe's 1956

review paper. Most of the earlier work necessarily was directed toward

interpretation of observations in terms of ionospheric scattering pro-

cesses. That is, the theories developed strived to describe the scatter-

ing processes themselves. This work leaned heavily on the techniques of

signal statistics, which arose largely in engineering problems of radar

development.

The later theoretical work has taken a more geophysical tumn, con-

centrating on the dynamics of irregularity development and motion. The

seeds of such investigation, of course, were sown earlier, and Ratcliffe's

review article describes observations and analytical techniques employed

in the study of irregularity motion. (Another comprehensive review of

this aspect of pre-IGY irregularity studies was given by Brig,s and

Spencer, 1954.) In the early studies of irregularity motion, the exist-

ence of the irregularities usually was accepted and the dynamical aspects

of the problem were confined to the drift (possibly coupled with some kind

of random motion om growth and decay) of what were taken to be clouds of

excess ionization. There was always a question as to the relation between

motion of ionization and gross motion of high-atmosphere neutral gas. The

latem workers have questioned also the relation between ionospheric motions

and the very nature of the observed irregularities.
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In much of the recent work, attention has been given to the possi-

bility that moving irregularities do not necessarily represent directly

the motion of atmospheric ionization - let alone that of the neutral gas.

In this case, the irregularities are viewed as propagating waves, which

simply perturb the ionization density as they travel. Some of this work

has been summarized briefly by Hines (196_). Even the seeds for _his

line of thought had been sown much earlier. Observations carried out as

early as 1937 were interpreted before the IGY in terms of compresslonal

waves or "travelling ionospheric disturbances" (Munro, 1950). This term

was originally and usually still is applied only to irregularities with

a scale of many tens of kilometers, whose propagation can be traced by

ionosondes over distances of many hundreds of kilometers.

The more recent work strives also to interpret smaller-scale irregu-

larities in terms of wave phenomena. For instance, _ (1963) has in-

vestigated the possibility of the production of field-aligned irregulari-

ties by means of a two-stream plasma instability in the equatorial electro-

jet. He concluded that the mechanism ought to produce ion waves having

many of the characteristics displayed by one type of equatorial sporadic E.

Thus, not only are planetary-scale dynamic phenomena important to

irregularity motions but possibly to irregularity existence as well. Cer-

tainly the general interdependence of ionospheric irregularities, however

produced, and global circulation effects, especially those of the atmos-

pheric dynamo, will receive much attention in the next few years. The

world-wide observations already carried out, however, argue against hope

for a simple comprehensive theory to explain irregular ionospheric struc-

ture in the way that Chapman's theory explained regular layer formation
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so early in the development of ionospheric research. Weprobably are

dealing with several originating mechanisms, which may not necessarily

be very closely related.

The multiplicity of observed characteristics of ionospheric irregu-

larities has often led to classification according to at least two vari-

ables. First, there is often a classification on the basis of height -

usually according to particular ionospheric layers or regions. Thus,

there exist collected results of E-layer irregulamity studies (Smith

and Matsushita, 1962) and of F-layer irregularity studies (Newman and

Penndorf, 1956). Second, there is often classification according to

latitude. The latter classification is sometimes made on the basis of

observed characteristics, as for instance the spread-F occurrence minimum

near 30 degrees magnetic latitude (Lyon, Skinner and Wright__, 1962). On

the other hand, the latitude classification may arise only for the obvious

reason that individual experimenters find their observations confined to

distinct latitude ranges. For instance, Bowles and Cohen (1952) have

pointed out similarities between certain types of E-region irregularities

observed in equatorial regions and certain aurorally associated irregulari-

ties observed at high latitudes. In addition, physical relationships may

be expected between irregularities at different heights and have been re-

ported by Thomas (1962) and others.

At least as complicated as the relationship between irregularities

at different latitudes and at different heights is the relationship be-

tween the effects observed with different experimental techniques. In-

ternational conferences, in fact, have been devoted to the results of

part_cnla_- obsez'vlng techniques (Aarons. 1963). Obviously, much work
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needs to be done on relating observations obtained with different tech-

niques, at different places, and due to irregularities at different

heights (when the height is known). In the meantime, there is need for

work with specific observing techniques (or judiciously chosen combina-

tions) at specific latitudes. Nowhere is the need for descriptive work

more acute than in the auroral and polar regions. Not only are past

observations scarcest in high-latitude regions, but also the phenomena

are often more complicated there than at lower latitudes.

To a large extent, observations in the polar regions have been

restricted to those obtained with ionosondes (ground-based and topside).

Calvert and Schmid (1964), for instance, have reported on world-wide

spread F as observed from above the F layer. Penndorf (1962, 1964),

using bottom-side ionograms, has found permanent maxima of spread F in

the northern and southern magnetic polar regions and travelling maxima

which circulate around the boreal and austral auroral zones on the

midnight meridian.

At auroral-zone latitudes, other observing techniques also have been

used. In the present work, VHF observations of radio stars have been em-

ployed. Before proceeding to the specifics of this work, let us briefly

review the results of possibly related previous work on ionospheric irregu-

larities in the auroral zone. We shall not consider D region irregularities

to any appreciable extent, for two reasons. First, far less is known about

the auroral D region than about the higher layers of the auroral ionosphere.

Second, due to the inherently lower ion density of the D region, its contri-

bution to the scattering of extraterrestrial VHF waves is not likely to be

competitive with the contribution of higher regions.
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The relatively high collision frequency of the D region suggests the

use of cosmic-noise absorption as an indicator of (at least large-scale)

irregularities there, which may be related to higher irregularities de-

tectable by radio-star techniques. Ansari (196_) for instance, has re-

ported patches of absorption, using a narrow-beam riometer. In addition,

information on smaller-scale irregularities in the auroral D region may

be forthcoming in the next few years from application of VHF ionospheric

scatter propagation to geophysical problems.

Results at middle latitudes lead first to consideration of the F

layer as the likely location for scintillation-producing irregularities.

In probably the earliest investigation of radio-star scintillation as a

recognized ionospheric phenomenon, Ryle and Hewish (1950) found a definite

association with spread F. In another early scintillation study, Little

and Maxwell (1951) found a continuous but marked increase in the fluctua-

tion of radio-star amplitude when the line of sight from the source to

their mid-latitude observatory traversed the auroral zone. Later,

(1958) performed an extensive study of spread F and scintillation at mid

latitude and found his results consistent with the view that they are

caused by the same irregularities.

An informative presentation of the characteristics of high-latitude

spread F has been given by Penndorf (1962, 1964). For an auroral-zone

station such as College, Alaska, which lies in the path of Penndorf's

travelling spread-F maximum, the phenomenon shows clear-cut seasonal and

diurnal variations. For the solar-maximum period which Penndorf analyzed,

spread F at College exhibited a consistent nighttime maximum. In summer,

the nightlymax_mumwas simply the culmination of a g_adual and deep 2_-
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hour variation. In winter, it spread for many hours before and after mid-

night, encroaching on the middle hours, which then showed a short sharp

dip in spread-F occurrence. The equinoctial periods appeared as clear-

cut transitions between summer and winter conditions. Shimazaki (1962)

and other workers have found a decrease in high-latitude spread-F near

solar minimum as compared with solar maximum, in contrast to lower-

latitude spread F.

Herman (196_) has interpreted Penndorf's results in terms of a compe-

tition between photoionization and charged particle ionization in the F

layer. In Herman's model, field-aligned irregularities are produced by

proton flux. Homogeneous ionization by solar illumination would tend

strongly to obscure the irregularities during the day, leaving a travel-

ling maximum of irregular structure on the auroral-zone midnight meridian.

Herman's model requires an unspecified magnetospheric mechanism to produce

spatially irregular proton streams. This problem has existed for years,

however, in regard to auroral electrons.

As pointed out by Shimazaki (1962), spread F as observed on vertical-

incidence ground-based ionogTams probably does not reveal the whole spread-

F picture at high latitudes. For instance, Bates (1959, 1960a, 1960b) has

observed oblique HF backscatter from F-layer irregularities. Due to aspect

sensitivity, he concluded that the irregularities are field-aligned and he

calculated their heights (1960a) to be in the region of 250 to 400 km.

The irregularity backscatter was found to be primarily a nighttime phe-

nomenon, with occasional patchy returns observed during the day (1960b).

Transitional effects near sunrise and sunset were noted which prompted

Bates to write, "It appears that during magnetically quiet periods solar
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radiation eliminates the random irregulaPities - - -." This comment is

of interest in regard to Herman's proposed model of spread F.

Another oblique-sounder HF return reported by Bates (1960b) and

interpreted by him as being due to a (possibly irregular) field-aligned

sheet of ionization is of interest in the light of certain topside sounder

results. Muldrew (1963) has reported evidence of propagation via field-

aligned sheets of ionization as the topside sounding satellite, Alouette,

passed over the equatorial F region. Alouette has revealed a variety of

apparently field-alinged spread F configurations (Calvert and Schmid,

1964). At least one type displays a strong latitudinal occurrence maxi-

mum at high latitudes along with a secondary but definite equatorial peak.

Calvert, Knecht and VanZandt (1964) have interpreted certain auroral-zone

returns from the fixed-frequency topside sounder Ionsopheric Explorer I

(S-48) in terms of sheets of field-aligned irregularities extending from

normal F-layer heights at least to the height of the satellite (about 950

km). The interpretation seems quite clear from their published iono_ams.

A large collection of evidence for field-aligned irregularities in

the auroral E layer has been secured over the years. The phenomenon

known as radio aurora and detected by radar returns from aurorally associ-

ated ionization has provided a large portion of the evidence. A survey

of experimental and theoretical work on the subject was given by Owren

(1960), who concluded that auroral radar returns were produced by aspect-

sensitive scattering from field-aligned irregularities. Both horizontal

and vertical (upward as well as downward) motions of ionization in radio

auroral forms have been reported by many workers on the basis of range

changes and doppler sh_ft and spread observations (Bowles, 1954; Nichols,

1957).
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The obvious question of how closely visual and radio auroras are re-

lated (in particular, in regard to their positions) has been argued almost

since the discovery of the latter. Early results often were ambiguous or

else implied only a loose spatial relationship between radio and visual

forms (Harang and Landmark, 1954). Recent work by _ (1965) using

a narrow-beam (2.2 degrees) antenna in conjunction with a photometer of

matching field of view directed along the radio line of sight shows close

spatial and temporal relationships between specific radio and visual forms.

Strength of radar returns also was found to be directly related to aumoral

brightness.

The radio aurora is believed to be very closely associated with

sporadic E ionization in the auroral zone. In a survey of world-wide

sporadic E characteristics, Thomas and Smith (1959) classified auroral-

zone sporadic E into four types: so-called "flat, slant, retardation

and aumoral." They reported little seasonal variation for the overall

phenomenon in the auroral zone but found that individual types show

varying yearly patterns. All types show geomagnetic correlation. The

authors could find no data available on correlation with radio-star

scintillations. All types generally show spreading of the ionosonde re-

turns, in common with equatorial sporadic E but in contrast with mid-

latitude retumns. Rapid vertical and horizontal motions and evidence

for fleld-alingment were reported.

Work carried out both before and after the survey by Thomas and Smith

suggested a close relationship between visual aurora and types of sporadic

E other than the so-called "auroral" type. Knecht (1956) found "slant"

type sporadic E to be related To remote auroras and concluded that there



22

was a close spatial relationship betweenvisual auroral forms and the

ionization responsible for his radio observations. He also found the

highest frequency present in aumorally associated sporadic E retumns to

be directly related to auroral brightness.

Bates (1961) later found slant sporadic E to occur only during

magnetic disturbance and thought it to be simply the HF manifestation,

on vertical-incidence ionosondes, of certain V_F auroral radar returns.

Hunsucker and Owren (1962) also pointed out that so-called "auroral"

type sporadic E was not the only type related to visual aurora. They

found it to be the type usually present on vertical-incidence ionograms

obtained in the presence of zenithal auroras but also found "flat" spor-

adic E retumns under such conditions. They found a correlation coeffi-

cient of 0.5 between the upper cutoff frequency of sporadic E and a

zenithal auroral index. Under conditions of pulsating aurora, they re-

ported almost inevitable strong absorption or complete blackout on HF

vertical soundings.

The one type of sporadic E in the auroral zone which does not appear

to be related to visual auroral displays is the so-called "retardation"

type. An unpublished study by Ansari revealed some similarities in the

behavior of retardation sporadic E and spread F in the auroral zone near

solar maximum. The similarities did not exist for other types of sporadic

E. Ground-based ionosondes, however, cannot be considered reliable indi-

cators of relationships between irregular structure at different iono-

sphemic altitudes. All too often, ionization at low levels obscures the

situation at higher levels at times of most interest.

The advent of topside sounders and their coordinated use with ground-
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based ionosondes is improving our knowledge of trans-ionospheric condi-

tions, although limitations still exist under disturbed conditions. Evi-

dence is starting to come in for the existence of field-aligned structure

extending through great altitude ranges. For instance, du Castel and

Vila (1964) have reported being able to trace such structure from sporadic

E levels up to i000 km. They raised the conjecture that "such fronts might

turn out to be responsible for some oblique-reflection spread F echoes at

the polar latitudes - - -." Bates' field-aligned sheets come to mind.

It is of interest that Bates (1960b) differentiated between aspect-

sensitive backscatter from field-aligned irregularities in the F layer

and returns attributed to the field-aligned "sheet." The comment of du

Castel and Vila, quoted above, continued "- - - we should not confuse

their isolated discontinuous pattern of travelling disturbances with the

regular steady periodic structure responsible for spread F." The latter

authors, however, concluded that normal spread-F irregularities also are

manifestations of very high-latitude structure, stating that "spread F is

thus understood as the bottom extension of exospheric sheets of ionization."

According to du Castel and Vila, field-aligned structure in the

upper F layer is very widespread. They postulate that special magnetic

conditions may be necessary for it to become detectable by ionosondes

exploring the bottom of the F layer. They describe the structure as

being "ripply" in character, with spatial wavelengths of the order of a

kilometer. In one particular case, such ripples with spatial wavelengths

estimated at 5 km were observed over England. This is in remarkable

agreement with the scales obtained for mid-latitude F-layer structure

from early radio-star scintillation measurements (Ryle and Hewish, 1950;

Hewlsh, 1951, 1952; Little and Maxwell, 1951).
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In addition to the kilometer-scale structure, du Castel and Villa

find a larger-scale "envelope." The envelope delineates the upper bound-

ary of the smaller-scale structure, fo_ming wedge-shaped groups. The

sharp apices of the wedges point upward along the magnetic field and are

separated by distances of the order of a few hundred kilometers. Law-cence,

Jespersen and Lamb (1960) attributed slow angulam variations of radio

stars to "lens-like ionospheric irregularities having dimensions as large

as 200 kilometers."

It would appear that many of the interpretations given to mid-latitude

observations of radio-star scintillations are on the verge of corroboration

by the powerful techniques of topside sounding. The topside sounders also

may be able to fill in descriptive detail of structures which radio-star

observations were able to suggest only in idealized fashion. A major point

which seems to be emerging is that the F-layer irregularities responsible

for mid-latitude radio-sta_ scintillations are intimately related to

heretofore little known structure in exospheric ionization. Exospheric

irregularities were detected with satellite scintillation techniques in

the norther_ auroral zone as early as 1959 (Basler and DeWitt, 1962), but

they seemed to be sporadic. The relative consistency of the topside-

sounder observations makes the manner in which such exospheric structure

relates to the ionospheric-magnetospheric interface a question of particular

interest, especially in the auroral zones. For instance, the theory offered

by Axford and Hines (1961) to explain a large number of high-latitude geo-

physical phenomena relies heavily on the latitudinal dependence of diurnal

maximization in high-latitude ionospheric irregularity occurrence.
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To someextent, the statistical data used by Axford and Hines could

be misleading as regards the morphology of specific events. Akasofu

(1964), for instance, has shown that the instantaneous "auroral belt"

shows significant departures from the statistical auroral zone. The

same situation may be expected for radio auroras. Some radio methods may

produce statistical results which in fact are biased against major magneto-

spheric agitations because of the effects of absorption. Sporadlc-E and

bottomside spread-F studies are among these.

Observations of radio-stam and satellite scintillations at frequen-

cies above about 50 MHz offer unbiased data. The possibility that these

techniques could contribute to understanding of high-latitude geophysical

phenomena through application at particularly disturbed times has been

relatively unexplored. Surveys of world-wide satellite scintillation

(e.g. Yeh and Swenson, 1964; Aamons, 1964) imply that such studies might be

profitable. The satellite surveys have shown the existence of an often

sharply defined zone of enhanced scintillation at auroral and (statis-

tically) subauroral latitudes. This zone seems to coincide closely with

that found for certain topside spread-F structure (Calvert and Schmid,

1964). In the case of scintillations, for which theme are mome observa-

tions, the equatorial boundary of the irregular zone is found to be related

to geomagnetic K index. These and other observational facts have prompted

Aarons (1964) to state, "It is inescapable that the moment to moment vari-

ations of irregularity regions are under as strong a control by the state

of solar disturbance as are the visible aurora but the physical linking

mechanism is nearly completely unknown."

Observations of radio-star scintillation at Saskatoon, Saskatchewan,
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over a four-year period (1955-58) have been interpreted by Forsyth and

Paulson (1961) in terms of a high-latitude region of enhanced irregulami-

ties whose southern boundary migTated southward with increasing solar

activity. Fremouw (1963), working with periods of particular disturbance

(visibility fades observed at College during the IGY) found a dependence

on local magnetic K index which is consistent with a southward shift also

of the northern boundary of the scattering zone during periods of high

magnetic activity. Thus, he found the "importance" (a measure of both

duration and severity) of severe scatter events to be directly related

to local K index up to an index of 3 but to be inversely related for

gTeater K indices. This is in contrast to lower-latitude observations

of similar events (but at different phases of the solar activity cycle),

which have shown more direct relationships (Nichols, 1960; Moorcroft and

Forsyth, 1963).

In view of the observations mentioned above relating irregularities

to high-latitude disturbance phenomena, the presence of high-latitude

irregularities also as a normal ionospheric feature is a befuddling -

but persistent - fact. Yeh and Swenson (1964) have stated, "scintilla-

tion occurs much more frequently than any of these other phenomena, and

may provide a more sensitive indication of the (particle) 'dumping' pro-

cess." This conjecture has not been demonstrated experimentally, al-

though Hook and Ow_en (1962) have reported one observation of E-layer

irregularities beneath a satellite which simultaneously detected an in-

flux of electrons.

Aarons has pointed out that in addition to simultaneous observations

of particle flux, topside spread F, and scintillations, "We need more
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measurementson the strength of the irregularities and their height and

size vamiation with latitude and geophysical disturbance and the lifetime

of individual irregularities as well as cloud regions." The primary goal

of the present work is to provide some of these measurements at times of

enhanced irregular structure in the auroral zone near solar minimum.

Within the present context, "enhanced irregular structure" refers to

the relatively strong, small-scale structure responsible for radio-staa_

visibility fades. Visibility fades occur when the flux from a radio star

becomes sufficiently scattered to reduce the correlation between signals

received at two nearby antennas. They also have been called "long dura-

tion fades" (Little et el, 1962) and "radio-star fadeouts" (Flood, 1963;

Moorcroft, 1963).

Besides representing an observed phenomenon asking for explanation

in its own right, the visibility fade offers itself as a recognizable

discrete event against the background of essentially omnipresent auroral-

zone scintillations. In addition, it provides an opportunity for quanti-

tative measurement of certain parameters of small-scale ionospheric

structure with radio-interferometric techniques, as we shall see in later

chapters. The strong direct dependence of auroral-zone ionospheric scat-

tering on the solar activity cycle (Owren, F_emouw and Hunsucker, 196_)

suggests solar minimum as the opportune time for an attempt at sorting

out "disturbances" from "normal" irregular structure in the auroral zone.



CHAPTER II

INTERFEROMETRIC RECEPTION OF RANDOMLY SCATTERED WAVES

IIA INTRODUCTORY CONCEPTS

A1 Descriptions of Scattering

_en a plane wave passes _ .....__,_u_L, a region of Irregular refractive

index, it emerges as a distorted version of itself - no longer plane but

rather containing spatial variations in phase. Suppose, for instance,

that a plane wave of light from a distant point source encounters a sheet

of glass having irregular thickness. On the source side of the glass,

the surfaces of constant phase are parallel planes, and the direction of

travel of the wave is easily identified with the perpendicular to these

planes. On the opposite side of the glass, the surfaces of constant

phase contain ripples as a result of the differential phase retardation

caused by the irregular glass.

The manner in which we commonly describe the effect of the irregular

glass on the penetrating wave depends on how large a portion of the wave-

front we are interested in at a given time. If all of our information

comes from a small portion of a single phase ripple or irregularity, the

wavefront still appears as approximately a plane. The perpendicular to

this quasi-plane is still identified with the direction of travel of

light rays, and to the extent that this direction is different from the

original propagation direction, we say the wave has been refracted by the

glass. Lacking any information from elsewhere in the wavefront, we are

apt to conclude that the glass has the not very irregular shape of a

simple wedge.

If now we explore a plane near the glass (on the "output" side),

-28-
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successively examining the phase of the wave on small adjacent segments

of the same irregularity, we begin to sense that the surfaces of constant

phase are not planes. Still identifying the "light rays" with the direc-

tion of propagation, wemeasure a change in direction as wemove. After

we have explored one phase irregularity in this fashion, the glass seems

to us to have the shape of a lens. If we continue to explore the irregu-

lar wavefront in this fashion, taking note of the differential refraction

imposed by the glass, we think of the glass as a collection of positive

and negative lenses.

So long as, at any one time, we receive information from a portion

of the wavefr_nt which is small compared with one irregularity, we are

content to think of the effect of the glass as refraction. We have no

trouble assigning an instantaneous direction of propagation to that por-

tion even if we note that the direction changes with time. If, however,

we consider the nature of the wavefront over many irregularities, we no

longer can find a unique direction defined by the direction of "rays"

which lie perpendicular to the surfaces of constant phase. Indeed, the

rays so defined are travelling in a multiplicity of directions, and we

refer to the light as having been scattered by the glass rather than

refracted.

A2 The Angular Spectrum

We should like to find a means of describing scattering which will

be valid over our whole wavefront region of interest. If our instanta-

neous interest is confined to a small portion of one irregularity, the

concept of rays will suffice, and we can explore a larger portion of the

wavefront over a period of time. If, however, our instantaneous interest
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is over many irregularities, another more useful concept has been made

available to us by Booker and Clemmow (1950), the concept of an angular

spectrum of plane waves. We shall not review in detail the fundamentals

of angular spectra but rather move directly to apply them to our observa-

tional problem. The fundamentals have been discussed on several levels.

An elementary discussion has been given by Sokolnikoff and Redheffer

(1958), in which it is shown how Fourier transformation of the field

existing at the aperture of an antenna gives a plane-wave expansion of

the field. The usefulness of this expansion, which constitutes the

angular spectrum, arises from the fact that the plane-wave components can

be taken as propagating independently away from the antenna - or from

a piece of rough glass, or from an irregular ionosphere - and then syn-

thesized by an inverse Fourier transformation to produce the field at any

other plane. This was shown rigorously by Booker and Clemmow as well as

by Booker, Ratcliffe and Shinn (1950). The correspondence of the field

so produced to the Fresnel diffraction pattern also was shown by Booker

and Clemmow, who related the concept to diffraction and antenna problems.

All these considerations were reviewed with relative brevity and clarity

by Ratcliffe (1956).

Booker and Clemmow showed that the angular spectrum is identical to

the polar diagram of a spatially limited antenna at sufficiently great

distance. It is in this case that the concept of rays becomes useful.

The concept of an angular spectrum is valid at any distance from an an-

tenna of any size. It is to be noted that while sequential observation

of small portions of a wavefront will allow us eventually to determine

the angular spectrum, the sum of rays from all portions is not identical
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to the angular spectrum. Rays are defined only over very restricted re-

gions of space while componentsof the angular spectrum are infinite in

spatial extent, just as componentsof a frequency spectrum are infinite

in temporal extent. For a number of important special cases, however,

the angular spectrum maybe thought of as a collection of rays. In par-

ticular, at sufficient distance from a random scattering screen, the width

of the angular spectrum can be closely approximated by the angular extent

of rays emanating from a typical irregularity.

A3 Amplitude and Phase of RandomSignals

For application of the angular-spectrum formalism to a particular

problem, such as ionospheric scattering, it is convenient to look for

valid simplifications of the general approach. Before we even mentioned

the term angular spectrum, in describing the scattering of light by an in-

homogeneous glass, we utilized some simplifications of reality. For in-

stance, we talked about a plane wave. A plane wave has a unique direction

of propagation and, rather obviously, it has therefore an angular spectrum

made up of a single unique component. Beyond this, however, The discus-

sion of wave propagation involves the concept of phase, and we must ask

what we really mean by phase and under what conditions it is a meaningful

concept.

Our most common encounters with the concept of phase are with Time-

varying quantities. For instance, suppose we observe The temporal varia-

tion of voltage at the terminals of an antenna. If the voltage is varying

sinusoidallywith time about a mean of zero, we can completely specify the

voltage by noting its frequency, its amplitude, and its phase at some
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reference time. Further, by noting the reference-time phase of the vol-

taEe produced by antennas at other positions, we can determine phase as

a function of position and ascertain the propagation of an electromagnetic

wave with considerable conceptual ease.

If, in the present work, we were dealing with signals from man-made

earth satellites, the monochromatic concept of phase alluded To above

would be quite adequate. We shall be dealing, however, with signals from

natural radiators - radio stars. In this case, the voltage which we ob-

serve at the terminals of an antenna has the character of noise. That is,

the voltage is a random function of time, where by "random" we simply mean

unpredictable. In the monochromatic case, the time-varying real voltage

can be specified for all time by a single complex number giving its (real)

amplitude and phase. (The complex number may be referred to as the com-

plex amplitude.) In the noise case, no single number can provide us with

such a complete description of the voltage. What then can we mean if we

talk of "amplitude" and "phase" and how can we describe the propagation

of a "wave"?

A straight-forward development of "a complex representation of real

polychromatic fields" is given by Born and Wolf (1959, section 10.2).

We shall concern ourselves here with one of the resulting concepts of

that development. The concept is that of the envelope of a random signal,

and we shall demonstrate it empirically rather than analytically. Con-

sider the oscillograms shown in figure i. At the left is displayed the

(amplified) output voltage from a random noise generator. We note the

unpmedictable nature of the voltage and, referring to its Fourier trans-

forth, we are apt to call it "white noise." By this we mean that the



0

O0

.,-I

O0

._

H

._ "
0

-,-I

-_ -,-I
0

0

_c: m
_0

o_

.r-I
0

4.-I-,-I
•r-_ ,--I

t.M I:_
_ 0



34

power spectrum of the signal contains equal contribution fTom all fre-

quencies. We seldom venture beyond the concept of a power spectrum to

consider what might be the relationship between the phases of the Fourier

components. This we shall do later, in a different context, but for now

we are concerned with the time domain. In looking at the left oscillo-

gram, we can see no quantities which we might term the amplitude or phase

of the time-varying signal. The best we can do is to note the fluctua-

tion of instantaneous voltage as a function of time.

In the right-hand oscillogram is shown the output of the same noise

generatom, after the signal has been passed through a band-limiting filter.

In this case, the "filter" was in fact an amplifier of the type employed

at intermediate frequency in our radio-star observations. The amplifier

passband was centered at 30 MHz and had a half-power bandwidth of about

250 kHz. The oscilloscope sweep rate and the photographic exposure time

were equal to those in the left oscillogram. The observed voltage, while

still having the general character of noise, is now seen to have some

element of predictability, characterized by what we might call its "enve-

lope." The envelope appears as a sort of fuzzy sine wave with a frequency

of 30 MHz. To the envelope, we can assign a nebulous amplitude and phase.

If we stop to consider the manner in which the fuzzy sine wave is

produced by the oscilloscope, we can give analytic definition to the enve-

lope. The oscillogram is produced by repetitive sweeps of the scope's

electron beam, each sweep lasting a few cycles of a 30 MHz oscillation.

If the amplitude and phase of the 30 MHz signal vary with time, randomly

but slowly compared with the basic 30 MHz oscillation, then successive

sweeps of the elctron beam produce the fuzzy sine wave observed.
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Thus, the observed signal could be described analytically as a sine

wave at the center frequency of our band-limiting filter, with the am-

plitude and phase themselves being functions of time. Born and Wolf

arrived at this result rigorously. Our intent here is to establish some

intuitive feeling for what is meant by the amplitude and phase of a ran-

dom noise signal. Note that these te_ms and their unifying concept of

an "envelope" have meaning only when the bandwidth of the noise signal

is limited. We shall make use of this idea of "band-limited white

noise" later.

It is important to note that in most observations of natural noise

radiators such as radio stars - including the present observations - the

siEnal of the type shown in the oscillogram is detected and averaged.

The averaEing is over times very lon E compared with the characteristic

times of the signal shown. These characteristic times are the period of

the fundamental oscillation (0.033 microseconds in this case) and the

longer time of variations in amplitude and phase. This latter charact-

eristic time is determined by the filter bandwidth, being comparable with

its reciprocal. It is called the coherence time of the signal and, in

the present example, is about four microseconds.

For averaEing times very long compared with the coherence time_ what

we finally deal with are the average amplitude and phase of the signal

envelope. These are very well defined quantities, as can be appreciated

by considering a smoothed version of the trace shown in the right-hand

oscillogram. The ionospheric effects with which we shall be concerned

produce deviations from these averages, which are slow compared with all

the times we have thus far considered - on the order of many hundreds of
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milliseconds or a few seconds, in fact. Thus, although we shall be deal-

ing with random noise signals, the concepts of amplitude and phase will

continue to be useful and well defined.

From the above rather intuitive introduction to the concepts of an-

gulam spectrum and random-noise envelope and the references to rigorous

treatments of these subjects, let us proceed to the problem of ionospheric

scattering. Along our route, we shall introduce another important concept,

that of random phasing in the angular spectrum. This idea will be funda-

mental to our theoretical considerations and is not in such widespread

use as the general concept of an angular spectrum or the envelope para-

meters of a noise signal. Accordingly, we shall have to ezplore the

meaning and consequences of random phasing _ather completely - although

only within the context of our particular problem.

IIB RELATION BETWEEN ANGULAR SPECTRUM AND FREOUENCY SPECTRUM

Let us begin from an observatlonal point of view, considering the

reception of an ionospherically scattered signal by a radio interfero-

meter. We are not concerned whether the original signal is dete_inistic,

as from a satellite, or nolselike, as from a radio star, so long as the

latter is bandwidth limited in the sense that the signal envelope is well

defined. In either case, we shall be concerned with amplitude and phase

modulations of the signal imposed by the ionosphere. In accord with what

actually is observed for the most part, we shall take the modulation it-

self to be random. Departures from this condition, which in fact also

are observed on occasion, represen_ interesting exceptions and will be

discussed in Chapter V. In much of the present chapter, we shall follow
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closely the work of Bramle 7 (1951), generalizing on and adding to his de-

velopment where appropriate to our observational situation.

Let the observinE frequency be m/2_ and suppose that the randomly

modulated signal is Fourier analyzed. Thus, let the voltage at the ter-

minals of one antenna be described as

N

vI = [ cn cos [_t + (_n-_)t , _n ] 2-1
n=l

where N is some large integer. Each Foumier component in the above ex-

pression has the nature of a sinusoid at the observing frequency, whose

phase is changing linearly with time at the rate (_n - _)" Let us denote

the time-varying phase by _n(t) and investigate how it might he produced

in the wavefield impinging on the antenna.

Consider a plane wave at the observing frequency approaching the

antenna from a direction making an angle Un to the vertical. In a co-

ordinate system with origin at the antenna where the z-axls is vertical

and the wave's propagation direction is in the xz plane, such a wave

could be expressed as

en = dnCOS [_t ÷ #n + (_/c)(x sin Un + z cos Un )] 2-2

where c is the velocity of light. FoP any Un' such a wave would produce

at the antenna (x = z = 0) a voltage of the form

Vln = cn cos (_t + #n ) 2-3

This corresponds to the nt--hFourieP component of equation 2-i, with the

time-varying phase Cn(t) equal to zero.

If, now in addition to propagation along the wave normal, the wave-
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front is moving in the x direction with an additional (and relatively vet 7

small) velocity u, then _n(t) becomes a non-zero function of _n" This is

seen readily by considering that in this case the third term in the argu-

ment of equation 2-2 would be

(u/c) [(x - ut) sin _n + z cos _n ] 2-4

so that at the antenna terminals, we get

Vln = cn cos [mt + _n - (_/c)(ut sin mn )] 2-5

Comparison with equation 2-1 reveals at once that

= - (2_II) ut sin_n(t) = -_t (u/c) sin an n
2-6

where _ = the observing wavelength, and that

_n = _[i - (u/c) sin Un ] = (2_IA)Cc - u sin en ) 2-7

Thus, the total output vI of equation 2-1 could be produced by an

angulam spectrum of plane waves propagating toward the antenna and simul-

taneously drifing horizontally. Each Fourier frequency component of v 1

would amise from a single component of the angular spectrum. This view

corresponds to drift past the antenna of an irregular wavefront produced

by a drifting but otherwise unchanging irregular ionosphere. It is, of

course, not the only manner in which the voltage vI could be produced.

The frequency components wn could be produced by a purely temporal

modulation by a smooth ionosphere. In this case, a neighboring antenna

always would produce an output identical to vI, which is inconsistent

with a vast collection of observational material from the past, as
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reviewed in Chapter I, and from the present work. Such a situation would

not correspond to ionospheric scattering at all. Combinations of drift

and temporal modulation also could occur. In this case each component

of the angular spectrum would have a frequency spectrum associated with

it. At the observing frequencies used in this work and with the tech-

niques employed, we are not concerned with components which might be

introduced by temporal modulation.

Aside from pume drift at a single velocity, there is another kind

of wavefront motion to be considered. This is a wavefront which changes

its spatial structure as it drifts, which would arise if the various an-

gular components drifted at different velocities. With interferometer

techniques alone it is impossible to differentiate between these two kinds

of motion, and we shall not concern ourselves with the relationship be-

tween angle and velocity. Our experimental results will be unaffected so

long as we suitably restrict our conclusions. Attempts to describe wave-

front motion in detail would be futile.

IIC OUTPUT VOLTAGES OF NEIGHBORING ANTENNAS

Equation 2-i and the ensuing discussion relate to the output voltage

of a single antenna, one of a pair of antennas used in a radio interfer-

ometer. Now suppose the second antenna is located on the x axis at a

distance d from the first. Due to the separation between antennas, a

given component of the angular spectrum will arrive with different phases

at the two antennas. To account for this effect, we can write the output

voltage of the second antenna as in equation 2-1, adding a fourth ter_n in

the argument. In order to preserve symmetry, let us also shift the origin
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of our coordinate system midway between the antennas. Then the two out-

put voltages are

N

vI = [ cn cos (_t + 0n + Cn + Xn)
n=l

2-8

N

v2 = 7 cn cos (_t + On + Cn - Xn)
n=l

where On is the time varying phase given by equation 2-6 and

= 2-9Xn (_d/_) sin an

The antenna voltages also can be weitten as

v I = A 1 cos (_t + eI )

2-i0

v 2 = A 2 cos (_t + e2)

The amplitudes A and phases 8 will in general be different for the two

antennas owing to the fourth terms in equation 2-8. They will be func-

tions of time owing to the time variations of the _n" Bramley (1951)

assumed the _n to be independent random functions of time and did not

1
consider the explicit relationship between them and the angular spectrum.

As discussed above, an irregular wavefront drifting at a constant velocity

will produce _n'S which are linear functions of time. Bramley's assump-

tion corresponds to time varying drift velocities and was made in order to

account for the statistical distributions thought to describe ionospheri-

_o avoid confusion, it is prudent to point out that Bramley's _9 are

equivalent to the sum of @n and Cn in the present notation, whlch was

chosen to allow explicit separation of time varying and static quantities.



41

cally scattered radio signals , namely those associated with band-limited

white noise. We shall see shortly that the assumption of independence is

sufficient to ensure the same distributions.

liD SIGNAL STATISTICS FOR A RANDOMLY PHASED ANGULAR SPECTRUM

D1 The Special Case of Completely Scattered Waves

la Single Antenna: Let us denote the complex amplitudes of the antenna

voltages by V 1 and V 2 and those of their Fourier components by Cln and

C2n. Then we have, from equations 2-8 and 2-10

V1 : A I exp (i8 I)

N N

: [ Cln : [ c exp (iYln)
n=l n=l n

N N

V 2 : A 2 exp (i82) = _ C2n : _ c exp (iY2 n)
n=l n=l n

2-Ii

where Yln = (_n + tn + Xn) and Y2n = (_n + ¢n - Xn)

Equations 2-11 show that the complex amplitudes V1 and V 2 are the phasor

sums of the component complex amplitudes Clnand C2n, respectively. The

summations represent random walk processes if the component phases are

"random."

Now the _n and Xn are defined by equations 2-6 and 2-9, respectively.

We have said nothing about the tn thus far, however. We now assume them

to be random variables I which are uniformly distributed between zero and

2_ and independent. This is what is meant by a "randomly phased angular

spectrum," and for sufficiently large N it is the sole assumption neces-

sary to produce A's and e's distributed as the envelope amplitudes and

Random functions of angle, _, but temporal constants.
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phases of band-limited white noise, as we shall now see. The ionospheric

requirements for random phasing will be explored in Chapter III.

Note that if the _n are uniformly distributed and independent, the

Yln and Y2n are also. The summations in 2-11 then are random walks, and

the central limit theorem can be evoked to show that the real and imagi-

nary components of V 1 and V 2 approach nor_nal distributions as N increases

without limit. FoP oum purposes, the descriptive treatment of the central

limit theorem given by Munroe (1951) and the somewhat more rigorous one

by Middleton (1960) are enlightening.

It i8 pertinent to point out that while independence of the compon-

ent phasors in 2-ii is neither a necessary nor a sufficient condition for

the central limit law to hold, it does allow statement of the central

limit theorem in the relatively simple form attributed to Liapounoff and

in the less restricted Lindeberg formulation. In this formulation, the

most important restriction on the component phasors, from a physical point

of view, is that no one of them dominates the aggregate. The detailed

density distribution of the components is not specified by the theorem

and may take a wide variety of for_s. Note that in the present situation,

we have not assumed any particular distribution for the cn"

Let us define the real and imaginary components of V1 respectively

as

Alc= A1 cos 81

and 2-12

Als = A1 sin 81

and similarly for the _eal and _mag/naryoomponents of V2. Since Alc and
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AIs are normally distributed for a randomly phased angula_ spectrum, as

discussed above, then under this sole assumption we can follow Rice (1945)

in his treatment of the envelope of band-limlted white noise and establish

the statistical characteristics of the envelope amplitude A 1 and 81. We

begin with the joint density distribution of AIc and Als. Since each of

these variables is normally distributed, their joint distribution will be

the product of two gaussians if they are statistically independent. That

they are independent is shown in Appendix la.

In view of the result of Appendix la, the joint distribution for

Alc and Als can be written as the product of two one-demensional normal

distributions. Taking into account the zero means of the A's, we have

for the joint probability density distribution function 1

where P(Alc,Als) denotes the probability that Alc and Als lie in the

elementary rectangle (dAlc dAls), and the o's are the standard deviations

of the A's.

Appendix la deals with the cross-products of the real and imaginary

components of A 1. Straight-forward application of the same development

to the squares of the real and imaginary components yields the variances

of the components. Thus, it is easily shown that

N
2 2 . t, 2

2-14

c s n=l n

iWe shall work throughout with (differential) probability densit[ distri-

bution functions, denoted by f. FoP brevity, we shall often use the term

"distribution" to mean functions of this sort. In no case will we be re-

ferring to the corresponding (integral) pmobability distribution function.



In view of equation 2-14, let us denote both the standard deviations by

_. Then the probability in equation 2-13 becomes

dAlc dAls / A2 A 2

P(Alc,Als) = exp I- ic + ls 2-152_o 2 202
/

2 A2 ) 2
Equations 2-12 show that (Alc+ is = A 1 and that (dAlcdAls) =

(Ald81dAl). Making these changes of variables in equation 2-15 we obtain

AldSldA 1

P(Al,8 I) = exp (- A_/202) 2-16
2_o 2

Equation 2-16 shows that A1 and eI are independent random variables since

P(Al,8 l) can be expressed as the product of p(A l) and P(81). Integration

of P(Ai,8 I) with respect to 81 over the range zero to 2_ yields

AldA 1
P(AI) = 2 exp (-A_/2o 2) 2-17

O

Division of 2-].7 into 2-16 then shows that

p(el) = del/2_ 2-18

Thus the joint distribution function f(Al,e I) is given by the product of

f(A I) and f(S1) , where f(A I) is the Rayleigh distribution given by

f(A I) = (Al/U 2) exp (-A_/2u 2) 2-19

and f(el) is the uniform distribution between zero and 2_, given by

f(81) : 1/27 2-20

Equations 2-19 and 2-20 show that the envelope amplitude and phase

of the fluctuating voltage produced at the terminals of an antenna by

the oonstant _l,_),ltol _h'J_t ,_ a _.an_],,n]yphaeed Rng, l]R_. speetz'um obey



_5

the same statistical laws as do the envelope amplitude and phase of band-

limited white noise. In arriving at this result we have relaxed the

assumption made by Bramley regarding the angular spectrum. No assumption

need be made about the drift velocity of the component waves in the angular

spectrum, other than that it be nonzero. The assumption of random phasing

is sufficient.

Ib Two antennas: Obviously the developemnt of equations 2-19 and 2-20

holds for A 2 and 82 as well as for A 1 and %1" We now open the question

of the relationship between the voltages at the two antennas. Important

quantities are the product of voltages VlV2, the product of amplitudes

AIA2, and the difference of phases 82 - 81 • In particular, we shall be

concerned with the means of these quantities and with the variance of

the phase difference.

The mean v_v2 of the product of voltages is the covariance of vol-

tages and is important to observations with phase-switch interferometers,

as we shall see. It is shown in Appendix ib that this quantity is given

by

N
2

VlV 2 = % [ cn cos 2×n 2-21
n=l

under the assumption of random phasing, where Xn is the phase angle de-

fined in equation 2-9.

Since equation 2-21 gives the covariance of the voltages, it provides

a measure of the correlation between them. The relations we seek between

the A's and 8's also involve the correlation between the signals received

at the two antennas. Since there are four variables, the situation may

be expected to be more complicated, however. To find the desired relation-
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ships, we must investigate the joint probability density distribution of

the variables. We begin by considering the joint distribution of the

four gaussian random variables Alc, Als , A2c , and A2s.

Since we are dealin E with Eaussian variables, the joint distribution

will be a four-dimensional Eaussian. It will not, in general, be simply

the pPoduct of four one-dimensional Eaussians since we have not estab-

lished independence of all four A's. Fundamentally, the multi-variate

normal (or gaussian) distribution if that function resultin E from the

multi-variate central limit law. It can be derived from consideration

of the n-dimensional random walk, as has been done by Middleton (1960),

for instance.

A convenient form of the n-dimensional normal distribution function

fop variables with zero means is Eiven without rigorous development by

Bendat (1958). In our present quadri-vamiate case, the n-dimensional

form reduces to

f(Alc'Als'A2c'Ags) = IMI-_ exp ( -1 4 )(2v) 2 t _ [i=l M..A.A.z]_- ] 2-22

j=l
where the numerical suscripts refer successively to the four double sub-

scripts, ic, is, 2c, and 2s; and M.. denotes the cofactors of the deter-
z3

minate IMI,whose matrix is

• _ii _12 _13 _14 _'

Q _21 _22 P23 _24 }

M = 2-23

_31 _32 _33 _3_

_i P42 P43 P4_ /

The elements of the matrix are the second moments of the random variables,

and M is known as the moment matrix.
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The elements of the moment matrix are discussed in Appendix ic, and

it is shown there that under the condition of random phasing M can be

reduced to

I_c -Bs

2

(0
- _C

M = 2 _c 2-24

0 2

where

N

2 2 2-25
o = _ cn

n=l

N

2 2-26
Uc = _ [ cn cos 2Xn

n=l

N
2

_s = % [ c sin 2X n 2-27
n=l n

All the information we require concerning the antenna voltages, v1

and v2, is contained in equation 2-21 and the elements of the moment

matrix M. For a randomly phased angular spectrum, it is more appropriate

to consider a spectral continuum than discrete spectral components. Thus,

let us now replace equations 2-25 through 2-27 and equation 2-21 with

their corresponding inteETal representations. Noting that _ c2 is the
n

th
power which would be dissipated in a unit resistance by the n component

wave of the angular spectrum, we see that equation 2-25 gives P, the total

power (per unit resistance) contained in the spectrum. Let us denote by

p(e) the (unitary resistance) angular power density in the spectrum. Then,

upon reca]l_n E the definltion of Xn fz,om eqi_at_on 2-9, we obtain the
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following:

2
o

w

-.ff

2-28

_C = f
-W

p(e) COS [(2wd/A) sin e] do 2-29

PS = f
-W

p(u) sin [(2_d/A) sin u] du 2-30

TIT

VlV 2 = f p(a) cos [(2_d/X) sin _] da = _c
2-31

Now equations 2-22 and 2-24 show that the joint distribution of

AIc,AIs,A2c , and A2s is given by

1

4 2104_( 2 2)]
BC+_ s

exp
-1

a 4 , 2+ 2)
"_ _c lSs

2 2 2 2 2

(AIc+AIs+A2c+A2s)

2_ (A A +A A ) 21s (A A A A ) }

- c ic 2c is 2s - s is 2s- is 2c
2-32
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To find the joint distribution of AI,A2,8 l, and e2, we now transform to

these coordinates from the four A's. The result, as is easily shown, is

AIA 2

42[a4 ( 2 ._)]- Pc +

exp

i"

-1 |a2(^2, A22)
2[a 4 - (p2ce _)] L

- 2_cAIA 2 cos (e 2 - 81 ) - 2_sAIA 2 sin (e 2 - eI)
2-33

It is to be noted that the distribution 2-33 cannot be represented

as the product of an amplitude distribution and a phase-difference dis-

tribution. Thus, while the amplitude and phase at a single antenna are

statistically independent, the amplitude at each of a pair of antennas

is statistically dependent upon the amplitude at the other and upon the

phase difference between the two antennas.

To find the joint distribution of the amplitudes, it is necessary

to integrate over all possible phases. Similarly, to find the distri-

bution of 82 - el, integrations must be carried out over A 1 and A 2.

Ric____e(1945) gives the joint distribution of A 1 and A2 as

-o4 _ (._, ._) .o - t_ 2Co_ .o * _s)_

where I represents the zePo-orde_ modified Bessel function of the first
o

kind for the argument in brackets. The inte£ration over amplitudes has

been carried out by MacDonald (1949), with the following result fop the

distrlbution of e2 - eI.
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4 2 2 _l8- (Pc *_s ) (1-82)½ + 8(_ - cos )

f(82-81) = 2wo4 (i-82)3/2 2-35a

where 8 : [Pc cos (82-81 ) - Ps sin (82-81)31o 2 2-35b

Now, we are interested in certain moments of the distributions 2-34

and 2-35. In the case of amplitudes, we are particularly interested in

the mean of their product AIA 2. For some applications, fop instance a

space-diversity receivinE system employin E square-law detectors and

2 2 is of interest
post-detection correlation techniques, the quantity AIA 2

also. Middleton (1960) outlines the development of these moments, with

the followin E results:

2

AIA----__ _ o F(_½_½,I,R 2) = o2[2E(R) _ (i - R2)K(R)] 2-362

2 2 4o2"(I + R2)
AIA 1 :

2-37

where F is the gaussian hyperEeometric function, E is the complete ellip-

tic inteEra I of the second kind, K is the complete elliptic integral of

the first kind, and

R = + 2-38
2

o

It is pointed out in Apendix ic that the p's are covarlances be-

2 .
tween components of signal at the antennas, while o zs the variance of

the siEnal voltaEe at a single antenna. Thus R is a kind of COrTelation
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coefficient between the signals at the two antennas. In the special case

where the spectrum is an even function (in our case, a symmetrical angu-

lar spectrum centered on _ = 0), _s vanishes (Rice, 1945, p. 78; Middleton,

1960, p. 352). In this case R is identical to the correlation between

the voltages v I and v2, as is evident from equation 2-31 and 2-38. In

the more general case with which we must deal, the two are not identical

but still are closely related. We shall find that R is a parameter of

ionospheric interest which can be determined experimentally.

Now, in general, the correlation between two variables is defined

as the ratio of their covariance to the geometric mean of their variances.

If the variances are equal, then obviously the correlation is given by

the ratio of the covariance to the variance of either. It is easy to

show, then, that the correlation between the amplitudes at the two an-

tennas is given by

.--2- A1

PA =

A 1 - A_

and that between the square of the amplitudes by

--2

AIA 2 - A1

PA2 -

A1 -

2-39

2-40

The various terms appearing in 2-39 and 2-40 are given by equations

2 The distribution of
2-36 and 2-37 and the distributions of A 1 and A I.

A 1 is the Rayleigh d_strlbution, given by equation 2-19. A simple change
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2
in stochastic variable I gives the distribution of A 1 as follows

f(A2) - f(Al)
2A 1

- (1/2o 2 ) exp (-A2/202) 2-41

The distributions of f(A l) and f(A_) yield the following:

2
2

A 1 = (_/2) o
2-142

= 2 o 2 2-_3
A 1

2-44

-_ 4 2-45
A1 = 8 o

Combination of the above with equations 2-36 and 2-37 yields, from

equations 2-39 and 2-40, the following:

4[E(R)-_.( 1-R 2)K(R) ] - _ 2-46
PA = 4 -

PA 2 = R2
2-47

Series solutions for the complete elliptic integrals are given in stan-

dard tables of integrals (Hodgman, 1955, integrals no. 459 and 460).

iSee Bendat (1958), section 3.4-3, for a discussion of change of variable

in density distributions.
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Using these, it is easily shown that equation 2-62 reduces to

PA = 0.91 (R 2 + II6-_R4 + ) 2-48

This gives the approximate (and equation 2-46 the exact) relation between

the wavefront correlation function R and the cross-correlation coeffi-

cient _A between the amplitudes at the two antennas, for the case of a

randomly phased angular spectrum in which no component predominates.

The deEree of relation between the amplitudes at the two antennas

is given in a meaningful fashion by the correlation coefficients PA and

pA 2. These quantities are simply related to the wavefront correlation

function R as described above. Now, the phase difference between the

signals at the two antennas also is related to R. This fact is evident

from the distribution function for (82 - 81) as derived by MacDonald

(1949) and given in our equations 2-35 upon recalling the definition of

R given in equation 2-38. It is difficult, however, to extract a physi-

cally meaningful relationship with the degree of Eenerality retained to

this point. Let us, therefore, simplify our considerations and return

later to a discussion of the phase chaPacteristics.

Recallin E that all the physical information we require about the

antenna voltages is contained in the elements of the moment Matrix M,

let us meturn to the integrals which define the elements, equations 2-28

through 2-31. From physical considerations, the integration limits in

these equations were set at -_ and +_. This allows siEnal reception from

all directions, and we can as well set the limits at -= and +=. The

physical information concernin E the directional distribution of received

signal is contained in the angular power density function p(e), more
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commonly called the "angular power spectrum."

For an ionospherically scattered satellite or radio-star signal, we

expect the flux to be received in a narrow cone centered on the direction

1
of the source. It is reasonable to assume also that the angular power

2
spectrum is an even function about the center direction, without speci-

lying the shape of the spectrum in detail. Thus let the center direction

be denoted by go and make the following change of variables:

c( = a + 6 2-49
0

p(a) = F(_) = F(-_) 2-50

A physically reasonable assumption which is persistently verified by

observation is that F is appreciable only for values of 6 which are suf-

ficiently small that cos6 may be approximated by unity and sin6 by 6.

The above set of assumptions means that we are assuming a narrow, sym-

metrical angular spectPum.

It is shown in Appendix Id that a narrow, symmetrical angular

spectrum leads to the following expressions fop the signal covariances

_c and _s and the wavefront correlation R:

iThe "direction of the source" may be only an apparent direction due to

refraction by ionospheric structure of a scale larger than that producing

the scatteming presently under consideration.

2It has been pointed out by K. W. Philip (private communication) that one

might expect some skewing of the angular spectrum to result from the non-

isotropic natuPe of a magneto-ionic medium. The possible effect of the

geomagnetic field on the shape of the angulaP spectrum produced by iono-

spheric scattering has not been considered here, except insofaP as it

might influence the shape of ion-density irregulamities.
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gc = cos 2Xo f F(6) cos (_ 6 cos _o) d6 2-51

_s = sin 2Xo f F(6) cos (2_d 6 cos a ) d$
__ O

2-52

f F(6) cos [(2_d/A) 6 cos a ] d6
_co 0

R=
2

f F(6) cos [(2wd/l) 6 cos a O] d6

['r(6) 2-5a

Now, equations 2-21 and 2-26 show that the covariance of the voltages

at the two antennas is equal to Bc" Therefore, under the assumption of a

narrow symmetrical angular spectrum, we have

SO

QO

VlV 2 = cos 2Xo f F(6) cos [(2_d/A) $ cos _o ] d6 2-54

2
VlV 2 = a (R cos 2× o ) 2-55

This relates the covariance of voltages to the wavefront correlation

function R and shows that the correlation of voltages is simply R cos 2Xo.

The correlation of amplitudes at two antennas receiving a narrow

symmetrical angular spectrum is given by equation 2-W8 with R evaluated

according to equation 2-53. For the square of amplitudes, the correla-

tion is given by R2.

When the angular spectrum is narrow and symmetrical, it becomes

possible to obtain a meaningful description of the phase difference
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between the two antennas. In this case_ MacDonald's general expression

for the distribution of 82 - 81 , given by equations 2-35, can be reduced

as follows. With _c' _s" and R given respectively by equations 2-51,

2-52 and 2-53, MacDonald's parameter 8 from our 2-35b becomes

8 = R [cos 2Xo cos (82 - 8l) - sin 2Xo sin (82 - 81)]

= R [cos (e 2 - eI + 2Xo)] 2-56

Substitution of this expression for 8 into 2-35a gives the following

distribution for 82 - 81:

R cos( 82-81+2X o)

I-R2 i +

2_ I_R 2 cos(82_el+2Xo) [I_R2 cos(82_81+2Xo)]3/2

The distribution 2-57 is still rather complicated, but two facts are

evident upon direct inspection. Fi_-st the distribution of the phase dif-

ference 82 - 81 is highly dependent upon the wavefront comrelation func-

tion R. Second, the distribution is even about 2Xo. It can be seen also

that the limiting values of zemo and unity for the correlation R yield a

uniform distirbution over a range of 2_ and a Dirac delta ruction at

2Xo, respectively. For any R, the average value of 82 - 81 is 2Xo.

As pointed out by Bramley. (1951), the variance and higher moments

of the phase-difference distribution would be difficult to calculate.

Bramley did calculate the mean absolute phase difference, obta_ning for

this observational parameter

-i 2-58
I% - ell : cos R
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However, the entire development to this point contains a physically

severe restriction demanded by the Lindeberg formulation of the central

limit theorem. Before discussing observational parameters, as such, let

us remove this restriction.

D2 The Special Case of Weakly Scattered Waves

The Lindeberg formulation of the central limit theorem requires that

no component in our angular spectrum dominates the spectrum. If we were

discussing backscatter, for instance, this condition would preclude con-

sideration of a spectrum containing a strong component due to specular

reflection. In the forward scatter case we might expect an analagous

"nondeviated" or nonscattered component. In Chapter III we shall dis-

cuss such a component within the context of ionospheric structure. For

now, let us assume its existence and ask how we can handle it in our

present observational discussion. Again we shall follow Bramley's ap-

plication of Rice's work. In order to describe conditions observed in

the auroral zone, however, we shall have to extend Bramley's analysis

and its mathematical foundation due to Rice. Unfortunately, we shall

have to resort to numerical techniques.

In the foregoing sections of this chapter we have been dealing with

a signal received on the ground after scattering in the ionosphere. We

began in equation 2-1 with a Fourier sum of scatter components, with the

general component of angular frequency _n presumed to be the result of

ionospheric modulation. Suppose now that in addition to the scatter, or

modulation, components there is a unique component at the angular fre-

= _. The relationship between the unique component and thequency _o
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remainder of the spectrum is that of a carrier and modulation-produced

sidebands.

In the absence of ionospheric modulation by scattering, there would

be no sidebands and the entire flux from the source would be contained

in the unique component. In the foregoing, we were forced by the central

limit theorem to consider the opposite case of complete scattering, where

all power is contained in the scatter spectrum. We shall now consider

the case of weak scatter in which both the nonscattered and scattered

components exist but where the former dominates the overall angular

spectrum.

For the case of weak scatter, the expression coPresponding to equa-

tion 2-i is identical to 2-1 with the addition of a term outside the

summation, giving the contribution of the nonscattePed component. Since

the phases, _n' in 2-I ape assumed to be random, we ape fPee to reference

them in such a way that _o = 0. In addition, fop _o = m" the second term

in the aPgument of 2-1 vanishes, and the contribution of the nondeviated

component is simply co cos _t. That is, the time varying phase @o is

zero. It is only in this case that the concept of "carPier" and "side-

bands" can be retained strictly.

It is to be noted that one could take account of large-scale me-

fractive effects by allowing the "nondeviated" component to have a time-

vaPying phase So(t). In this case, small-scale scatteP effects would be

described in the frequency domain and large-scale PefPactive effects in

the time domain of the same Fourier pair. If this were done, we would

find that we would have to have one foot in each domain of the spatial-

angular FourieP pair also. This approach has potential for describing
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multiple-scaled ionospheric structure, but it becomessomewhatcomplicated

analytically. We shall concern ourselves only with effects which, in the

present context, can be assigned To "small-scale scattering."

Whatever the nature of the angular spectrum, the voltages v I and v 2

at the two antennas can be represented by (time-varying) amplitudes A,

and A2 and phases 81 and 82, as in equations 2-10. We are interested in

relations between these quantities for the case of a nonscattered com-

ponent, which we shall denote by S cos _t, accompanied by a scatter spec-

trum. The situation is mathematically equivalent to a sinusoldal signal

in the presence of a noise spectrum. It is the scatter or "noise" com-

ponent which was described in section D1 of this chapter.

All of the foregoing results can be taken over with a slight change

in notation. We can no longer equate the antenna amplitudes and phases

with those of the scatter-component resultant alone. We shall retain A's

and e's for the former and use B's and $'s for the latter. With this no-

tation in mind and taking into account the separation between antennas,

the antenna voltages can be written as

vI = AI cos (mr + el) = s cos (_t ÷ Xo) +Blc cos _t - Bls sin mt 2-59

v 2 = A2 cos (mr + 82 ) = S cos (mr - Xo) ÷ B2c cos _t - B2s sin mt 2-60

where the four B's represent components of random-walk resultants as dis-

cussed in section Dla of this chaper.

The relations between the various quantities above are easily seen

in the phasor diagrams of figure 2, where it is to be remembered that

the B's and ¢'s are random variables.
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From the phasor diagrams or from equations 2-59 and 2-60, it is obvious

that

2 = S 2 B 2 B 2 2-61
AI + 2S(BIc cos Xo + BIs sin Xo) + ic + ls

2 = S 2 zc B 2 2-62A 2 + 2S(B2c cos Xo - B2s sin Xo) + B_ 2 + 2s

The last two terms in each of the above, when averaged, each give the

2

variance _ of the scatter components. Further, since Blc, BIs , B2c

and B2s have zero means in accord with the results of section Dla, we get

the following upon averaging equations 2-61 and 2-52:

-£ s2
A 1 = A 2 = + 2_ 2 = 2P 2-63

where P is the (average) total power (per unit resistance) received from

the source. At the frequencies with which we are concerned, where iono-

spheric absorption may be ignored, the total power is constant.

From equations 2-59 and 2-60 we can find also the covariance of the

voltages v I and v 2. It is shown in Appendix le that the result is

VlV----_=½S 2 cos 2Xo + _c 2-64

Eor a narrow scatter spectrum which is symmetrical about the direction

of the nonscattered component, Pc is found from equations 2-51 and 2-53

to be

2
]Jc = R o cos 2Xo 2-65

Thus equation 2-64 becomes

VlV 2 = (½S 2 + Ro 2) cos 2X ° 2-66
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Since the correlation p between the voltages is given by the ratio of

the covaPiance to the power P, we have from 2-66 and 2-63

S2 + 2Ra 2
= cos 2-67

P S2 + 2cr2 2Xo

It can be seen that if S goes to zero, the variance reduces to that given

in equation 2-55 for the complete scattering case and p to the corres-

ponding value of correlation, R cos 2Xo.

Equations 2-66 and 2-67 hold for all values of the variables and so

are quite general. To discuss the correlation of amplitudes and the

phase-difference characteristics of the signals in this general case,

however, is difficult. We shall restrict our considerations here to the

case of weak scatter, following the example of Bramley (1951). In sec-

tion D3 we shall extend Bramley's considerations to the more general case,

using numerical techniques.

Weak scatter is characterized by the condition that o is small com-

pared with S/2_2-. In this case, according to Bramley, we have

approximately

1

A1 = S + Blc cos Xo + Bls sin Xo + _ (Blc sin Xo - Bls cos Xo )2 2-58

1 )2
A 2 = S + B2c cos Xo - B2s sin Xo + _ (B2c sin Xo + B2s cos Xo 2-69

These approximations can be verified by squaring and comparing with 2-61

and 2-62. If this process is carried out, it is found that the approxi-

mation involves ignoring the effect of terms containing factors of order

o/S and o2/S 2. From 2-68 and 2-69 we find that

2

-- E"2 ; s + 2-7o
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and

2 2

AI = A_2 % $2 + a2
2-71

As in the complete scatter case, we shall find that important

quantities are the mean product of amplitudes AIA 2 and the corresponding

2 2 If, again we ignore
quantity for the squares of the amplitudes AIA 2.

terms of high order in a/S, we obtain approximately from 2-68 and 2-69

-- 2-72
AIA2 = S2 + 2 + Pc cos 2Xo + Ps sin 2X °

and from 2-61 and 2-62

2 2 = S_ S2
A1A2 + 402 + _S2 (PC cos 2X ° + PS sin 2X o)

2-73

The details are given in Appendix If.

Now equation 2-39 shows that we can obtain the correlation coeffi-

cient for amplitudes from 2-70, 2-71 and 2-72. Thus

Pc cos 2Xo + Ps sin 2X° 2-74

PA = 2

But comparison with equations 2-51 and 2-52 and 2-53 shows that, for a

narrow symmetrical spectrum, this gives simply

PA=R
2-75

In order to find the correlation coefficient for the squares of the

_2 The former we
amplitudes from equation 2-_0, we still need and A I.

get simply from 2-63. Thus we have approximately

2 2

.-_ = .-_ = S4 2 2-76
A I A2 + 4S 2 o



64

The latter is obtained from 2-61 and 2-62 with the approximate result

-E -E= S4
A 1 = A 2 + 8S2a 2 2-77

Combining these along with 2-73, we get from 2-40

4S2 (go cos 2Xo + gs sin 2Xo)
- 2-78

PA2 = 2
_S 2 o

Again this reduces, for the case of a narrow symmetrical scatter spec-

trum, to

PA 2 = R 2-79

Thus in the weak scatter case the correlation coefficient for amplitudes

and that for the square of amplitudes are equal and both are given directly

by the wavefront correlation function.

From the phasor diagrams of figure 2, we obtain the following:

S sin X° + Bls -S sin X° + B2s

= tan e2 - 2-80
tan eI s cos Xo + Blc S cos Xo + B2c

Now, we should like the distribution of the random variable (e2 - el).

Accordingly, we need the distributions of eI and e2. Since Xo is con-

stant, the desired distributions will be identical, except for a shift

in mean, to the distributions of T1 and T2, where the latter two random

variables are defined as

T1 = eI - x° and T2 : e2 + Xo 2-81
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Combining 2-80 and 2-81, we find

tan T1 :

S sin Xo + Bls

- tan Xo
S cos Xo +Blc

- ; tan T2=
S sin Xo + Bls

1 + S cos Xo +Blc tan Xo

It is easily shown that 2-82 reduces to

S sin X° - B2s

S cos X° + B2c
+ tan X°

i +
S sin X° - B2s

S cos X° + B2c
tan Xo

2-82

tan T1 =

BIs cos X° - BIc sin X°

• ;tan T2 =
S ÷Blc cos X° + Bls sznx °

B2s cos X ° + B2c sin X°

S + B2c cos X° + B2s sinx o

2-83

In the weak scatter case where S dominates the angular spectrum,

T1 and T2 will be small and the above can be approximated by

T1 = S-I(Bls cos ×o -Blc sinXo) ; T2 = s-l(B2sC°S ×o + B2c sin Xo)

2-8g

Equations 2-8_ show that, in the weak scatter case, T1 and z2 are the

sums of two independent gaussian random variables. Accordingly, they

themselves have gaussian distributions. Their means and variances

will be given by the sums of the means and variances of the correspondin K

B's. Thus both Zl and T2 have means of zero and, taking into account the

constants S -I cos X° and S -I sin Xo, variances of o2S -2.
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From equations 2-84, we obtain

T--_ S-2 2= (BlsB2s cos ×o - BlcB2------_sin2X° + BIsB2c sin X° cos X°

- B2sBlc sin Xo cos Xo)

and

= S-2[_ c (cos 2 X ° - sin 2 Xo) + 2_s (sin ×o cos Xo)]

= S-2 (gc cos 2 Xo + g s sin 2 Xo) 2-85

-_- -_- S_ 2 0 2
T1 = T2 = 2-86

From equations 2-85 and 2-86 we see that the correlation coefficient

between T1 and T2, and therefore between 81 and 82 , is given by

PT =

Pc cos 2X ° + _ sin 2X °

2
O

2-87

Again, for the case of a narrow symmetrical scatter spectrum, this

reduces to

P't" = R 2-88

Thus in the case of weak scatter and a narrow symmetrical randomly phased

scatter spectrum, the correlation coefficients for all peptinent envelope

parameters are given directly by the wavefront correlation R.

The characteristics of T1 and T2 established above may be summarized

by a two-dimensional normal d_st_ibution with zero means, variances of

o2S -2 and correlation R. Thus (Bendat, 1958, section 3._._)



67

S 2 S2(_I 2 _ 2RTI_ 2 + T22)

f(Tl,_ 2) = exp [ - ]
2_ 2 _ 2o 2 (1 - R2) 2-89

More important, the characteristics of _l and t2 allow us to estab-

lish the distribution of 32 - 31. Middleton (1960, section 7.5-1) shows

that the distribution of the sum of two gaussian random variables is

always gaussian, even if the two variables are not independent. He also

shows that the mean of the sum is equal to the sum of the means and gives

a very general expression for the variance of the resulting distribution.

In our particular case, the resulting mean is zero and the resulting

variance is given by (2_2/$2)(I - R). Hence the distribution of

T2 - tI is

-S 2 (T 2 - 31)2S
f(_2 " TI) - ]

2o[_(I-R)] ½ exp[go 2 (i - R)

Now equations 2-81 show that

2-90

T2 - T1 = e2 - 81 + 2 X° 2-91

Thus equation 2-90 gives the distribution of the phase difference

82 - 81 with the mean shifted by 2Xo. Therefore the moments of the dis-

tribution 2-90 give directly the central moments of 82 - 81. In addition,

if we define

n= t 2 - _i 2-92

we also see that I.Igives the mean deviation of 82 - 81 from its mean

value of 2Xo. This observational quantity is given, from the
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distribution 2-90, by

® _S 2 2I.I = s I . exp[ ]dR
a[_(l - R)] ½ o .o2(1-R)

The integral is of the form f n e
O

variable to x = a n, is found to be i/2a 2 or 2 o2(i-R)/S2.

22

-a q d n, which by a change of

Thus we obtain

-- o R)%= _. 2 (1___ 2-9.

which is the weak scatter expression corresponding to equation 2-58 in

the complete scatter case.

D3 The General Case of Arbitrary Degree of Scatter

3a The coherence ratio: In sections D1 and D2 of this chapter we have

discussed the statistical characteristics of two types of signals. The

first was assumed to be totally scattered during transmission through the

ionosphere. In the second case it was assumed that only a very small por-

tion of the total flux was scattered, the major portion arriving at the

ground without any ionospherically introduced characteristics. This con-

dition of weak scatter corresponds to reality at middle latitudes. The

condition of complete scatter was treated by Bramley (1951) largely to

provide an analytical foundation for the weak-scatter case. In the

auroral zone, ionospheric conditions are such that the complete scatter

case also is met occasionally in observations. More often, conditions

are intermediate between the two extremes of weak and complete scatter.

Thus it is necessary to treat the general case.

In section D2 we introduced an ionospherically nondeviated component

of the angular spectrum whose amplitude is S and whose average power
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therefore is $2/2. The nondeviated componentwas added to a noiselike

2
spectrum of scatter components of average power a . Obviously the ratio

of the two contributions to total received power can be used as a measure

of the degree of scattering. Now, when there is no scattering the re-

ceived wavefront is fully coherent, and when there is complete scattering

the wavefront has the noncoherent or random character of noise. As a

measure of the degTee of scattering, therefore, let us define the

"coherence ratio" b as

b = S2/202 2-95

It was pointed out in section D2 that the nondeviated component is

mathematically equivalent to a sinusoidal signal bumied in noise, the

latter arising from the scatter spectrum. Thus the coherence ratio is

mathematically equivalent to a (power) signal-to-noise ratio. It is

immediately evident that the complete scatter case of section D1 corre-

sponds to a coherence ratio of zero while the weak scatter case of sectiun

D2 corresponds to large coherence ratio. Full coherence is achieved as

the flux in the scatter spectrum vanishes, forcing the coherence ratio to

increase without limit.

The importance of the coherence ratio in describing the effect of

ionospheric scattering is obvious. It is a direct measure of the degree

to which scattering is taking place duping a given observation. This

has been recognized for some time and put to use in observations with

radiometers and other simple receivers. In analysis of such observations

it was possible to make direct use of the work of Rice (1945) on the

mathematical analysis of a sinusoldal signal bumied in noise (McNicol,
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i9_g). Rice's work, however, stopped short of providing a mathematical

basis fop analyzing interferometric observations. When two antennas are

used and phase coherence between them is retained, one must deal with the

correlation which exists between the signals received at the two antennas.

The mathematical analogies dealing with the temporal autocorTelation func-

tion of a signal were developed by Rice for the case of pure noise but

not for the case of a sinusoid buried in noise.

Now Bramley (1951) was able to adapt Rice's work to the case of

weak scatter as observed with an interferometer. He did not treat the

general case however. His work was adequate for observations at middle

latitudes. At equatorial (Koster, 1958) and auroral (Little et al, 1962)

latitudes, however_ significant reductions are observed in the correlation

of voltage at the two antennas of an interferometer. These reductions,

which we shall call "visibility fades," can occur only if the coherence

ratio decreases to finite values. In the extreme, the coherence ratio

may decrease to zero so that complete scatter takes place, but any finite

value is possible and indeed a wide range is observed.

Studies of visibility fades to date either have effectively ignored

the quantitative ionospheric information available in them or else have

treated the phenomenon approximately. The approximate approach precludes

direct experimental determination of the coherence ratio. In some of the

work which has appeared in the literature, the significance of the co-

herence ratio and of Bramley's approach to the problem does not appear

to have been fully appreciated. It is our intent in this section to ex-

tend Bramley's approach to include the general case of arbitrary coherence

ratio.
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3b Covariance of voltages and fringe vigibili!y: It is widely known

that the output of a phase-switch radio interferometer gives directly the

covariance of its antenna voltages (Bracewell, 1958; Fremouw, 1963). We

have already established (equation 2-66) that this quantity is given for

arbitrary b, by

VlV--_= (_S 2 + Rg 2) cos 2Xo 2-96

Now, in the absence of ionospheric scatter, s vanishes and all power

is contained in the nondeviated component of the angular spectrum. Thus,

under disturbed ionospheric conditions the covariance of antenna voltages,

and therefore the averaged output of a phase-switch interferometer, be-

comes P cos 2Xo. But P, the total flux received from the source, is in-

dependent of scatter conditions and in general is given, according to

2
equation 2-53, by ½S 2 + u . Therefore the ratio of the averaged output

of a phase-switch interferometer under conditions of scatter to that

under undisturbed conditions is given by

½S 2 + Ro 2 b + R 2-97

½S 2 + o2 b + 1

Comparison of 2-97 with equation 2-67 shows that

b + R 2-98
b+---_--fcos 2 X° = p

where p is the correlation coefficient for voltages.

Now, the covariance is inherently an average quantity, so that

identification of it with the output of any instrument implies some sort

of averaging of that output. In our case, where we are dealing with a

radio interferometer observing a radio star whose signal has been
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scattered by the ionosphere, our averaging period must be long compared

with the scintillations produced by motion of the scattering region.

Typically this requires averaging over at least many tens of seconds and

preferably over a few minutes.

Statistical stationarlty requimes that b and R remain constant over

the averaging pemiod. In the case of a radio star, however, its direc-

tion e° and the phase angle Xo derived therefnPom vary with time due to

the earth's rotation. We shall see later that a convenient and meaning-

ful averaging period, which turns out in practice to be on the order of

minutes, is that during which 2Xo varies from -_/2 to + _/2. Let us

denote by [ the average value of p during this period. Now Xo is approxi-

mately a lineaP function of time so, during the same period, we have

cos 2Xo = 2/_. Thus, over such an averaging period, we have

b+R _p
= _ 2-99

Equation 2-99 relates the coherence ratio b and the wavefront cor-

relation R to the average mathematical correlation coefficient between

the voltages at the antenna outputs. The right side of the equation has

little physical significance and in fact depends strongly upon our choice

of averaging period. The physical parameters we desire are b and R. For

simplicity, let us replace _p--/2with the symbol r, where

r = the ratio of the average output of a phase-switch interferometer

under conditions of scatter to that under undisturbed ionospheric

conditions, with the period of averaging in each case corres-

ponding to one-half cycle on the instrument's output pattern.

With this definition, the disturbed coherence ratio b and wavefront
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correlation R are related observationally by

b+R
r : b ÷ 1 2-100

The parameter r has strict mathematical meaning through its relation

to _, but its physical meaning is obscure from this point of view. 1 It

will be given more obvious meaning later when we discuss observational

scaling procedures. For now let it suffice to say that r is a quantity

which is readily determined from phase-switch interferometer observations.

We shall call it "visibility." Its importance lies in its relationship

to the physically meaningful quantities b and R. The relation of b and

R to ionospheric parameters will be developed in Chapter iII.

3c The analytical approach to amplitude and phase characteristics and

its limitations: Equation 2-96 gives the covariance of antenna voltages

for arbitrary coherence ratio. In order to obtain equally general re-

lations for the amplitude and phase characteristics analytically, we must

obtain the appropriate joint probability density functions. Several suc-

cessors of Rice in the field of signal statistics and communication theory

have dealt with the problem of a signal buried in noise. Notable among

these is Middleton, who developed the quadri-variate joint distribution

for amplitudes and phases and carried out the integrations necessary to

obtain the joint distributions for amplitudes and for phases independently

(Middleton, 19_7).

iFor the reader familiar with radio-astronomy terminology, consideration

of equations 2-98 and 2-100 will show that r is the fringe visibility
of the interferometer record.
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The distributions which Middleton developed are directly applicable

to our situation if we include the reasonable assumption of a narrow

symmetrical angular spectrum centered on the nondeviated component, with

one additional assumption necessary, namely that the slowly varying phase

Xo is kept at zero. This "phase compensation" is produced and maintained

electronically in the pertinent instrument of our experiment. Hence we

are free to use Middleton's distributions directly.

Middleton's work is quite general and it includes provision for

dealing with modulated signals. This provision could be used in our

problem in order to account for refractive effects by large-scale iono-

spheric structure. Thus changes in apparent direction of the source

would produce phase modulation of our nondeviated component and focusing

or defocusing by ionospheric lenses would produce amplitude modulation.

The same modulations, however, would be imposed on the scatter components,

resulting in nonstationarity of the noiselike part of our total signal.

Again we shall concentrate on small-scale scattering, having pointed out

the potential of Middleton's formulation for dealing with multi-scaled

ionospheric scattering.

For the case of small-scale scattering only, equation 5.18 of

Middleton (1947) gives directly the joint distribution of amplitudes

appropriate to our observations. 1 In our notation the distribution is

AIA2Ib RAIA2exp _-_) / _mIm! 2--_I_R2)] Ima4(1-R2) 2o2(1-R2)J
m=O 2-i01

iThe ubservations referred to here were obtained with a phase-sweep inter-

ferometer employin E noncoherent detection and phase compensation. (The

phase compensation feat---urehas little practical siEnificance in censid-

eration of amplitudes but considerable importance for phase measurements).
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where ¢ : I, e : 2 for m _ i, and I : the modified Bessel function of
o m m

the first kind and order m.

While the distribution above is quite complicated, it is fairly easy

to see that it reduces to the distribution given by Rice for pure noise,

in the event that S and b vanish. In this case the second and third

Bessel function arguments above vanish. The corresponding Bessel func-

tions themselves then vanish except for omder zero, in which order they

have value unity (Watson, 19_8, equation 2 in section 3.7 and Table II

in the appendix). The distribution 2-101 then reduces to

f(AI,A 2) = exp A1 ÷ A2

o (1-R2> 2  2(1-R2 [a2(l-R2
2-102

Upon recalling the definition of R from equation 2-38, it is readily

seen that equation 2-102 is identical with equation 2-34, which is the

distribution given by Rice for pure noise (our complete scatter case).

2
In the opposite extreme of full coherence, where a vanishes and b in-

creases without limit, the distribution becomes a Dirac delta function

at A 1 = A 2 = S.

Now Middleton (1947) has developed expressions for second-order

-- 22

moments such as AIA 2 and AiR 2 from the distribution 2-101, from which we

could derive the correlation coefficients for amplitudes and for the

squares of amplitudes. The expressions are so complicated, however, as

to preclude their usefulness for our observational problem.

Middleton's joint distribution for the phases eI and 82 (equation

5.20 in his 1947 paper) is even more complicated than that quoted in our

equation 2-101 for the amplitudes A 1 and A 2 under the same conditions.

In his textbook on statistical communication theory (Middleton, 1950),
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the author himself points out the limited applicability (due to complexity)

of expressions for momentsof the joint phase distribution. Further, it

is not the joint phase distribution, per se, whosemomentswe desire for

our observational problem, but rather observational parameters derived

from the single-variate distribution of (82-81). There appears to be no

simple meansof obtaining our desired distribution and observational

parameters derived therefrom, even if we were to use Middleton's joint

distribution for eI and 82.

3d The numerical approach: In view of the above it appears necessary

to abandon hope for an analytical treatment of the general scattering

problem. Instead we shall develop a numerical technique which will allow

us to compute observational parameters for arbitrary coherence ratio.

The technique must produce results which agree with the analytical results

of Rice and Bramley in the special cases where analytical solutions exist.

In Chapters IV and V we shall use the results of the numerical analysis

to reach observational conclusions.

Let us recall that the signals with which we must work in the

general case consist of a nonscattered component whose amplitude is S

and a spectrum of scatter components whose resultant amplitude is B1 at

one antenna and B2 at the other. The phase angles of the nonscattered

component are plus and minus Xo, respectively, at the two antennas. The

phase angles of the scatter components are independent of one another

and uniformly distributed over a range of 2_.

Now X_ is established purely by the position of the source and, for

a radio star, is slowly varying and completely predictable. It contains
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no information about the ionosphere or its scattering process (for the

small-scale scattering under consideration here.) It can be (and is in

our phase-sweep interferometer) maintained at the constant value of zero

by instrumental introduction of time-varying phase compensation. The

same phase retardation is introduced into each of the scatter components

with the result that their statistical characteristics are unchanged.

All the statistical results of section D1 of this chapter are applicable

to the scatter spectrum and its resultant, with X ° to be taken as

zero throughout.

The relationships between the quantities of interest are those

shown in the phasor diagrams of figure 2, except that X° is to be taken

as zero. Thus we have the relations given in figure 3. It is to be re-

called that the B's are random variables resulting from random-walk

addition of a randomly phased angular scatter spectrum. Their statis-

tical characteristics, along with the relative magnitude of S, determine

the statistical characteristics of the A's and 8's. It is certain

average characteristics of these latter random variables which we seek.

The independent variables which we wish to control as input para-

meters in our numerical technique are the relative magnitude of the

non-scattered and scattered components and the correlation between the

scatter resultants at the two antennas. That is, we wish to control the

coherence ratio b (while maintaining the total power constant) and the

wavefront correlation R. It will be recalled that the latter is identical

to the correlation of voltage in the scatter spectrum when Xo is zero.

Now the total power is given by P = S2 + 02 and the coherence ratio

by b = $2/2o 2. Combination of these two equations shows that
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S = [2bP/(b + 1)] % and a = [P/(b + 1)] % 2-103

For constant P, the magnitude of the coherent and nocoherent components

are controlled by choice of b through equations 2-103.

The control of correlation is not so obvious but it turns out to be

rather simple with digital computer techniques. Modern program libraries

contain routines for generating fields of random numbers whose distribu-

tions are gaussian. We shall now show how four independent gaussian

fields can be combined to produce two correlated gaussian fields in which

the correlation coefficient is controllable as an input parameter. We

shall find that the two correlated fields together with two of the orig-

inal four independent fields possess the joint distribution which

describes the scatter component of our angular spectrum.

First let us recall the distribution which must be satisfied. It

is given in equation 2-32 for the case of general Xo. Equations 2-51,

O

2-52 and 2-53 show that, for X° = 0, Ps vanishes and Pc reduces to R a'.

In this case, 2-32 becomes /
|

f(BIc,BIs,B2c,B2s) _ 472 a_l_R2)_ expl -i 2 2 2 _2a2(l_R 2) [(Bic+Bls+B2c _2s )

L1

- 2R(BIcB2c-BIsB2s )]

2-I04

J
This is the quadri-variate gaussian distributlon appropriate to our case,

namely a randomly phased, nar_cow and zero-center symmetrical angular

spectrum of scatter components. The first and second moments are as

follows:
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BIo = Bls = B2c = B2s = 0

B2 = B2 = B2 = B2 2
ic Is 2c 2s = o

2

BlcB2c = BIsB2s : R a

2-105

BIcBIs : B2cB2s : BIcB2s : B2cBIs : 0

Now suppose we have four independent random variables with gaussian

distributions, namely Blc,Bls,X , and y, with the following first and

second moments:

m m m

BIc = BIs : x : y : 0

7 V- 2 2
= : :y :aic is

2-106

Since we specified independence, the crossmoments are zero as follows:

w m m

BIcBIs = _ = BlcX = BlcY = BlsX : BlsY : 0 2-107

Let us form the following linear combinations:

B2c = RBIc + (I-R2) ½ x and B2s = RBIs + (I-R2) ½ y 2-108

The means of B2c and B2s are simply the sums of the means of the

two terms in their respective generating transformations, 2-108. In

view of the first equazion in 2-106, then, we have

B2c : B2s = 0 2-109

Further, since Blc and x axe statistically independent and B2s and y are

also, the variances of B2e and B2s are the sums of the variances of the
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terms in the generating transformations.

in 2-106, then, we have

<: <: R2 a2 + (I-R2) _2 : a2

In view of the second equation

2-110

Forming other pertinent combinations from 2-106, 2-107 and 2-108 we get

the following crossmoments:

82Jls: _iJls + (I-R2__l---_: 0

s-2Pls:_+ _l.R2_--yB1s _o2 2-111

B2cBIc = RB_c + (I-R2) ½- =xBlc Ra 2

B2sBlc = RBIsBIc + (l-R2)½--=YBlc 0

Summarizing the first and second-order moments resulting from the

four independent fields defined by 2-106 and the linear transformations

2-108, we get the following:

Blc = Bls = B2c = B2s = 0

B2cBIc : B2sBls : Ra 2

BIPls : B2cB2s : B2cBls : B2sBlc : 0

2-i12

But the moments given in 2-112 are identical with those given in 2-105.

Further, a gaussian distribution is defined uniquely By its first and

second-order moments. Thus, starting with four independent gaussian

random variables, we can transform two of them in such a way that the
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resultin E joint distribution defines voltages produced at two antennas

by a randomly phased scatter spectrum with controllable correlation.

The linear transformations involved are given in 2-108.

3e Results of the numerical approach: The preceding section describes

a means of generating and relating the coherent and noncoherenT component

phasors shown in figure 3. With this accomplished, the trigonometry of

the phasor diaEmamsallows straight-forward calculation of statistical

chamacteristics of the resultant phasors as functions of b and R. For

an extension of the work by Bramley, we should like to calculate the

amplitude and amplitude-squame co,elation c_efficients, PA and pA 2, and

the mean absolute phase difference I"I.

We saw in section D2 that PA and PA2 ape identical in the case of

weak scatter and in section Dlb that they are nearly so in the case of

complete scatter. Thus, these two quantities ape essentially equal

threughout the range of b from zero to infinity and we shall concern ou_-

_elu_s only with PA" Recalling that PA is given by

2

A_2 - _ii 2-i13

PA = -- 2

it is easi_ se_
from the phasor diagrams how PA can be calculated once

the phasors S, Blc,Bls,B2c, and B2s have been generated for a given com-

bination of b and R, as described in section D3d.

Reca11_ng also %hat _,I_ _ g_ven by

I, 1 = le2-ell 2-n4
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when Xo is zero, this quantity I too is easily found from the Tmigonometry.

In performing this calculation, the phase difference is kept within the

range of -_ to +_, corresponding to the observational fact that ambigu-

ities are not resolved. This corresponds also to the fact that phase

distributions in the work of Rice, MacDonald, and Middleton refer to a

2_ range.

In figure 4 are given the results of numerical calculation of PA

and Inl as functions of R for some finite values of b, along with the

same quantities as obtained from Bramley's expressions for the limiting

cases of large b and b = O. These results are included to show how our

numerical results relate to the analytical ones of Bramley. Certain

other quantities are of more observational interest than PA and Inl.

Let us first explore the statistical characteristics of amplitude-related

quantities and then examine the characteristics of phase.

Many scintillation studies have employed "scintillation indices"

based on the fractional fluctuation of amplitude or power. These indices

take no account of reductions in correlation between the signals received

at two antennas of an interferometer. The most direct interferometric

method of measuring amplitude or power fluctuations is with a phase-

sweep (or "lobe-sweep") interferometerwhich employs simple rectification

of the audio signal rather than coherent (or "phase-sensitive") detection

at the sweep frequency. Aside from a constant of proportionality, the

output of such a device is given in our notation by AIA 2. This quantity,

iSometimes called the "difference correlation coefficient" for phase

(Ratcliffe, 1956, section 8.4).
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or its square root, is of fundamental importance in scintillation indices

as well as in the amplitude correlation coefficient PA" Of interest, then,

are the statistical distributions of AIA 2 and Al_ 2. The distribution of

either of these quantities will suffice for our purpose, the other being

easily obtained theref-_om.

We shall concern ourselves with the distribution of Al_2because it

can he compared directly to analytical results in a limiting case. This

distribution can be obtained as a function of b and R by our numerical

technique. Figure 5 gives the resulting histograms for twelve combina-

tions of b and R. The histograms show that the average value of AI_ _,

and therefore also the avePage value of AIA 2, is not very strongly depen-

dent on either b or R. Thus, these average quantities cannot be expected

to yield much information about small-scale ionospheric scattering. Some

workers have relied on A_2 in attempts to explain the nature of visi-

bility fades. Others, notably Flood (1963) and Moorcroft (1963), have

concentPated on phase characteristics during visibility fades.

While the average value of AI_ is not strongly dependent on b or

R, figure 5 shows that the spread in the distribution is strongly con-

trolled by b and to a lesser extent by R. The histograms clearly display

the approach of the distribution toward a Dirac delta function as b is

increased, which is to be expected from Bramley's analytical work. Less

obvious, but nevertheless consistently displayed, is a sharper peaking

of the distribution for a given b as R is decreased. This latter fact

means that an intePferometeP record will show somewhat less fluctuation,

fop a given degree of ionospheric scatter, as amplitude scintillations

at the two antennas become less correlated.
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In section D2 it was pointed out that Rice's work on mathematical

analysis of a sinusoidal signal buried in noise is directly applicable

to observations of ionospheric scatter by single receivers. For the

case of unity correlation, interferometric observations become identical

with radiometric observations insofar as amplitude characteristics are

concerned. Therefore, our distributions for unity correlation should

agree with analytical results taken from Rice (1945). Under conditions

of unity correlation, the output of a noncoherently detecting phase-

sweep interferometer is simply pmoportional to received power and its

square root is proportional to amplitude. The histograms of figure 5

under this condition must be consistent with the Rice distribution for

amplitude, given in his equation 3.10-11. In our notation the Rice

distribution is

or

'+ s,j iA,Sl
f(A I) = --_ exp [ A1

a 2 0 2 °17 j

(b+l)Al (b+I)AI22p _{_)AI)
f(A I) - p exp[ - b ] I I

o /7

2-115

2-116

In the case b = 0, for which P = o2, the Rice distribution reduces to

the Rayleigh distribution, given in equation 2-19.

The smooth curves given in the unity correlation column of figure

5 were calculated from equation 2-116. They show the degree of agree-

ment between our numerically derived histograms and analytically derived

distributions, where an analytical method is available. The fluctuations

evident in the histograms resulted from the finite number (i000) of input

data used in their generation. In computing observational quantities,
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up to i0,000 input values were used for each of the four random variables

Blc,Bls,X, and y. In addition, some graphical smoothing was employed.

Thus, the results to be discussed shortly are relatively free of statis-

tical fluctuations. We shall find later that most of our experimental

data contain considerably fewer independent input values. In order to

estimate errors due to statistical fluctuations, it was considered neces-

sary to reduce such fluctuations to negligible levels in the theoret-

ical computations.

In section D2 we defined the observational quantity r, called visi-

bility. This quantity is obtained from phase-switch (or coherently

detecting phase-sweep) observations by taking the ratio of the average

output under scatter conditions to that under undisturbed conditions.

Under conditions of severe scatter - i.e., during a visibility fade - the

quantity r is observed to decrease below its undisturbed value of unity.

Equation 2-100 shows that a sufficient condition for zero visibility is

b = R = 0. The condition b = 0, it will be recalled, represents the

condition of complete ionospheric scatter.

It was mentioned earlier in the present section that some attempts

have been made to interpret visibility fades by their effect on the

average output of a noncoherently detecting phase-sweep interferometer.

Where this has been attempted, the observed effect has been less than

obvious (fig. 14, Little et al, 1962). Figure 6 indicates quantitatively

that this is to be expected, as was inferred qualitatively from the dis-

tribution of figure 5. The curves of figure 6 give the predicted ratio,

AIA2/2P , of the average output of a noncoherently detecting phase-sweep

interferometer during a visibility fade to that under undisturbed
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ionospheric conditions. The ratio is given as a function of R and b.

It is seen that a very severe visibility fade, one which produces the

condition b = R = 0, results in only about a 22% decrease in the average

output of a noneoherently detecting phase-sweep interferometer.

Whereas fiEure 6 displays the dependence of the average value of

AIA 2 on b and R, figures 7 and 8 display the dependence of the fluctua-

tion of amplitudes on these two parameters. The ordinate in figure 7

is the fractional mean-square fluctuation of _, given by

AA = (Al_2 ) 2 2-I17

When R is near unity, the amplitudes are essentially identical, and the

above reduces to the fractional mean-square amplitude fluctuation given by

(Al_K1)2 -_ 2A1 - A_I

AA : -- - -- 2-118

AI2 A1 2

Even at auroral latitudes, most scintillation observations are

taken under conditions of near-unity wavefront correlation. The quantity

AA' or an amplitude "scintillation index" based on it, is then a direct

measure of the coherence ratio b, corTesponding to the relationship be-

tween AA and b existin E at the right-hand edEe of fiEure 7. Under

visibility-fade conditions, however, when R is reduced, the relationship

between AA and b is altered. Under such conditions, the apparent scin-

tillation index is depressed. For instance, for b = 1.0 and R = 0,

fiEure 7 shows that the interferometrically observed value of AA' defined

by equation 2-117, is 43% below the fractional mean-square amplitude

fluctuation, defined by equation 2-118, which would be observed under

the same conditions by a radiometer.
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Another measure of amplitude scintillation sometimes used (Little,

et al, 1962) is based on the mean fractional fluctuation in power re-

ceived from the source. Under conditions of near-unity correlation, this

latter quantity is given by

2IAx
Ap = __ 2-119

Under visibil_tv fade conditions, this generalizes to

IAIA2 Aq 21
Ap : _ 2-120

AIA 2

The quantity given in 2-120 is plotted as a function of b and R in fig-

ure 8, reducing to that given in 2-119 at the right-hand edge. Again

the effect of reduced correlation on the apparent fluctuation is evident.

For b = 1.0, zero correlation produces a 21% reduction as compared with

the unity-correlation value.

Let us turn now to the characteristics of phase as calculated by

our numerical technique. The quantity of observational interest is the

phase difference n. The most complete description of n, of course, is

given by its distribution function f(n). In figure 9, f(n) is plotted

for twelve representative combinations of b and R. It is obvious that

the technique yields the results predicted by the work of Rice (1944,

19L_5), MacDonald (1949), and Bramley (1951) in the limiting cases. In

pamticulam, for low b and R, f(n) approaches a uniform distribution at the

value i/2z and is approximated by a Gaussian function for large b. The

technique also yielded a Dirac delta function at zero for unity corre-

lation and any value of b, although this fact is not shown in the figure.
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Fig. 9. Phase-difference distribution for 12 combinations of

coherence ratio_ b, and wavefront correlation, R.
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It will be noted that for small b, the distribution departs from a delta

function vet7 quickly as the correlation R is decreased.

For actual use in observational analysis, what one desires rather

than the full distribution of n is some average quantity derived there-

2
from. One possible choice is the variance _ , which is shown plotted as

a function of b and R in figure 10. It will be found that the curves of

-_ (l-R)
figure i0 approximate n = b for sufficiently large b, in agreement

with Bramley's results for the limiting case (Bramley, 1951, section 3).

For b smaller than about 5, significant departures from the approximation

are found.

IIE SUMMARY

The primamy purpose of this chapter has been to provide a descrip-

tion of the observational results to be expected from interferometric

observations of randomly scattered waves. The necessary concepts of the

angular spectrum and the amplitude and phase of random signals were dis-

cussed briefly in section A. In section B, the relationship between

the angulam spectrum and the frequency spectrum of a signal received by

a single antenna was explored and presented analytically for the case of

a drifting but otherwise unchanging scattering layer. The discussion

was extended to include a second antenna, thus introducing interfero-

metric considerations, in section C.

The signal characteristics to be expected were developed and des-

crihed in Section D, which was based on the assumption of random phasing

in the angular spectrum. The meaning of this assumption as regards the

received signal was explored in some detail in section Dla, which dealt

with the signal statistics of single-antenna observations. The
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discussion was extended to interferometric observations in section Dlb.

Sections D1 and D2 discussed the special cases of completely scat_:ered

and weakly scattered waves, respectively. The development followed

closely the work of Bramley (1951), who applied the results of Ric____e(1944,

1945) to the problem of scattered-wave reception. The purpose of sections

D1 and D2 was two-fold: to explore and relax slightly the assumption

underlying Bramley's work and to lay the analytical framework for

section D3.

The purpose of section D3 was to develop and present the signal

statistics to be expected from random scattering for the general case

of arbitrary degree of scattering. In section D3a, the coherence ratio

b - being the ratio of nonscattered to scattered flux - was introduced

as a measure of the degree of scattering. In section D3b, the covami-

ance of voltages at two antennas of an interferometer was related to the

coherence ratio and the wavefront correlation R, which was defined in

section Dlb. The observational parameter r, called the visibility, was

related To the covariance of voltages and to b and R in section D3b.

The resultin E relationship, which is important to our experimental prob-

lem, was given in equation 2-100 as

b+R
r - 2-100

b+l

The covariance of voltages and the visibility are of importance be-

cause they are directly observable by means of a phase-switch or co-

herently detecting phase-sweep interferometer. When noncoherent detection

is employed with a phase-sweep interferometer, pure amplitude information

can be obtained. Such an interferometer also offers a means of obtainin E
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pure phase information. Weshall see later that a combination of pure

amplitude information with the complex information _nherent in equation

2-100 allows measurement of certain ionospheric parameters related to

b and R.

The graphical results of section D3e represent relations between

b, R, and various statistical characteristics of the amplitude and phase

of randomly scattered signals. The most complete description of the

statistical characteristics is given in the density distribution histo-

grams of figures 5 and 9. In our experimental problem, we shall use the

information contained in the cumves of figure 7, which relates to the

fluctuation in the output of a noncoherently detecting phase-sweep

interferometer as a function of b and R.



CHAPTERIII

IONOSPHERICPRODUCTIONOF RANDOMLY SCATTERED WAVES

IliA REQUISITES OF A RANDOMLY PHASED ANGULAR SPECTRUM

In Chapter II we discussed the statistical characteristics of an

ionospherically scattered signal as received by an interferometer at

the ground. Our point of view was observational with little consideration

given to the manner in which the observed characteristics are produced.

In this chapter we shall turn our attention from conditions at the

ground to conditions at the ionospheric scattering layer and relate the

two. It will be mecalled that the fundamental assumption upon which

the work of Chapter II was founded was that of random phasing in the

angular spectrum. Our first job in the present chapter is to explore

the feasibility and consequences of this assumption.

The scattering effect we ape considering arises from the differential

phase shift imposed on a plane wavefront as it passes through an

irregular ionospheric layer. At the base of the layer the effect can

be described in terms of the distribution of phase across a plane. Fop

the scattering we ape considering - as opposed to refraction in individual

ionospheric lenses - we take the distribution to be continuous outside

our range of interest. It does not die off in the manner of a wave

packet but continues in the manner either of a periodic function or of

a random function.

If the phase distribution is periodic, it can be represented as a

Fourier series. If it is random, it can be represented as a Fourier

integral. In either case, the simplest configuration is the limiting

-99-
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one of a single Fourier component. More complicated periodic configurations

then can be built up by addin E harmonic components. Random configurations

can be built by expanding the "bandwidth" limits on the Fourier integral.

In the latter procedume, the resultin E configuration is quasi-periodic

for narrow fractional bandwidths in the manner of band-limited white

noise. As the fractional bandwidth is increased, less and less ordered

configurat ions result.

Let us begin by considering a simple cosinusoidal configuration of

phase at the base of the scatterinE layer. That is, let the phasc as a

function of distance along one direction of a plane be

8(x) : 8 + Ae cos (2_x/D) 3-1
0

In the above 8 represents the phase which the radio wave would have
* O

at the base of the layer if the layer had no irregular structure.

AS repPesents the maximum phase deviation across the plane. The spatial

period of the phase structuPe is D. 8 is of little consequence, and we
O

= 0 In addition, we ape not concernedcan reference our phase so that 80 .

with the amplitude of the radio wave at the base of the scatterin E layem.

It is constant across the plane, and we shall take it as unity. With

these simplifications, the "aperture distribution" descPibing the complex

amplitude of the radio wavefPont acPoss the base plane is

V(x) : exp [ia8 cos (2_x/D)] 3-2

FoP The moment, let us consider the special case where A8 is very

small. In this case, equation 3-2 reduces approximately to
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V(x) = 1 + iAe cos (2_xlD) 3-3

Now the angular spectrum associated with V(x), expressed as a function

of the sine s of the propagation angle, is given by the Fourier transform

of V(x) if distances are measured in units of the radio wavelength l

(Booker and Clemmow, _=5v;_A^ _-_-_:==^ _=_v_n=_j _,e _,,_ t_n_forms

of unity and cos (2_x/D) are expressible in terms of the Dirac delta

function. The former is a delta function at s = 0, and the latter is a

pair of delta functions at s = +_l/D, or s = _ A/D in unit measure rather

than wavelength measure. Thus the angulam spectrum of V(x) is made up

of a nondeviated component wave of very nearly unit amplitude and two

sidewaves of complex amplitude iAe/2.

Ratcliffe (1956) has discussed the propagation of the angular

spectrum described above. As the three waves propagate downward from

the ionosphere, their relative phases change. The change in relative

phase pmoduces field distributions across 'lower planes which are "_Ifferent

from that existing at the base of the scattering layer. The distributions

may be thought of as Fresnel diffraction patterns. While the diffraction

patterns diffem at different levels, they are quite predictable owing

to the small number of components in the angular spectrum and the simple

phase relationship between them at all levels. The angular spectrum is

far from being randomly phased. Under these simple conditions it is

found that the diffraction patterns repeat themselves at periodic

distances from the base of the scattering layer. Near the screen the

field distributions a_e dominated by phase fluctuations, farther from it

by amplitude fluctuations, still farther by phase fluctuations, and so

forth.
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If now the maximumphase deviation Ae is allowed to be large, a

more complicated angular spectrum is produced. TheFourier transform

for the resulting waveform is well knownin the theory of phase

modulation. As pointed out by Ratcliffe (1956), the angular spectrum

in this case is made up of discrete components at s = +nA/D where

n = 0, i, 2, 3,- - -. The amplitudes of the components are distributed

as a series of Bessel functions of the first kind, with the amplitude

th

of the n component being given by Jn(AS). The number of components

with appreciable amplitude is approximately Ae. The phases of components

at the base plane are simply related, with the phase of the nth

component being n_/2.

As the angular components propagate downward from the base of

the scattering layer, again their relative phases change. If the normal

to the base plane is taken as the z axis of the coordinate system and

-i
sin s = e, then the propagation geometry shows that the phase of the

th 2_z

n component varies along the z axis as -_- cos an. It can be shown

that nowhere beneath the base plane do the phases return to their

initial interrelationship. Thus, at no plane is the Fresnel diffraction

pattern identical to the aperture distribution.

Hewish (1951) has calculated the amplitude and phase distributions

produced at various distances from the scattering layer by phase

modulation having various values of maximum phase deviation AS. He

found that phase deviations predominate near the layer, as in the case

of very small Ae. At greater distances from the screen, amplitude

deviations are built up. At still greater distances the strengths of
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amplitude and phase deviations remain roughly constant. The amplitude

and phase deviations do not build and wane alternately as the distance

is increased, as in the case of very small 58.

The fact that the diffraction patterns do not show alternate phase

and amplitude domination as a function of distance from the scattering

layer is a consequence of the fact that the phases in the angular spectrum

do not cyclicly repeat their interrelati6nship. This does not mean

however, that, at any individual plane, the angular spectrum is randomly

phased. At the base plane, all the phases are multiples of 2_. Obviously

random phasing does not exist there. At lower planes, the phase of the

th
n component is given by

n_ 2_z 3-48 = -- + -- COS a
n 2 l n

Due to the continuous variation of z, the second term above gradually

distributes the component phases more uniformly in the range 8 to 2_.

However, this is not enough to produce random phasing. The definition of

random phasing requires also that the component phases be independent of

one another. Equation 3-4 shows that this is not the case for the angular

spectrum under consideration. The n th component phase bears a definite

functional relationship to the (n + i)th component phase, etc.

Suppose now that there is not just one sinusoidal component of

phase structure in the wavefront at the base of the scattering layer, but

many. Let the maximum padie phase deviation of the mth component be

50 m and its spatial phase be _m" Then_ Snstead of equation 3-2, we have

the following aperture d_stribution:
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V(x) =_ exp 68m cos [(2m_x/D) + _m
m:l I

U

3-5

where M is the number of spatial components in the phase structure of

M

the wavefront and the symbol_represents an M-fold product.

m=l

The Fourier components of such a distribution can be obtained by

carrying out the multiplication on the n components arising from the

simpler distribution of equation 3-2, after accounting for the spatial

phases _m" This procedure produces the well-known components at

_+nm_/D and at sum and differences thereof. The amplitudes of the

Fourier components are M-fold products of Bessel functions. If the

_m are taken to be zero, the phases of the Fourier components turn out

to be integral multiples of _/2, as in the simpler case. The phases

in the simple case arise as coefficients (i) n of the Bessel functions

Jn(Ae) in the Fourier series (Ratcliffe, 1956). For all the _m equal

to zero, the multiplication required by equation 8-5 simply adds integral

exponents to these coefficients.

Theme is no reason that the _m must be zero, however. Ratcliffe's

equation 19, which gives the Fourier series representation of the

simple distribution given in our equation 3-2, can be obtained by a

method given by Stam__r(1953, Appendix 7). A generalization of Star_'s

procedure yields the following expansion for the distribution of

equation 8-5:

M _ in (_ 2wimnmX

-]'--[ i (aSm) exp ( D ")V(x) : e m 2- + _m ) Jnm
m=l n =-_

m

3-6
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The individual Fourier components,which represent memberwaves of our

angular spectrum with their phase measured at the point x = 0 in the

base plane, are identified by a set of integers nm. Thus

M

s : [ mnmk/D n : 0,±i,±2,
m:l m

The phases of the components are given by

3-7

It can be seen from equation 3-8 that any ordered relationship

in the spatial phases _m will result in an ordered - although possibly

very complicated - relationship in the phases of the angular spectrum

components. In this case, the angular spectrum is not randomly phased

at the base plane. We have seen in the discussion of equation 3-_, that

propagation downward from the ionosphere redistributes the phases in

the angular spectrum but does not destroy correlation between them.

Thus an angular spectrum corresponding to structure with ordered

spatial phases will not be randomly phased at any plane. If, however,

the spatial phases are independent, then the angular spectrum will be

randomly phased at some distance beneath the base plane and beyond.

In order to achieve random phasing in the angular spectrum, then,

we must have a number of spatial components in the radio phase

distribution at the base plane, and the spatial phases must be

independent of one another. They do not need to be uniformly

distributed, however, since the phases of the angular spectrum are

M
W

¢(s) = [ nm (__ + Cm ) 3-8
m=l
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redistmibuted during subsequent propagation in such a manner as to

spread them between zero and 2_. It is to be noted also that the

number of components in the angula_ spectrum is many times as great

as the number of spatial components, except in the special case

where the 8em are very small. This is another "r_ndomizing influence"

on the angular spectrum.

In the above argument, we tacitly assumed that the components

of spatial structure are harmonically related. This is of no con-

sequence since we did nothing to restrict the fundamental spatial

period. We are free to let it increase without limit so that we

are dealing with Fourier integrals instead of Fourier series. In fact_

to satisfy the random-phasing requirement that we have a large numbe_'

of angular components, the basic period D must be large if s is to

be restricted to physically meaningful values. 0nly angular

components corresponding to s less than unity are capable of carrying

radio energy away from the scattering layer. Greater values of s

correspond to evanescent waves (Booker and Clemmow, 1950). A more

stringent restriction on s was made in Chapter II, a restriction which

is persistently verified observationally. We require s to be

sufficiently small that it can be interchanged with its arcsine, _.

Let us summarize the implications of assuming random phasing in

the angular spectrum. First, the requirement of a large number of

independent angular components precludes strict periodicity or other

steady-state structure within our region of interest. That is, there

must be a degree of randomness in the wavefront phase at the base of
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the scattering layer. In addition, the requirement of a uniform

distribution of phase in the angular spectrum sets a minimum propagation

distance between the base plane and our plane of observation for any

given base-plane phase structume. These are the implications of the

basic ass'_mption of Chapter II. They are plausible but do not in them-

selves justify the assumption. The justification is observational, and

we shall return to it in a later chapter.

It is to be noted that we have not specified the amplitudes of the

angular spectrum components or the strengths A8 m of the spatial

components of phase structure. The assumption of random phasing there-

fore is not seriously restricting from a physical point of view. It

is true that we cannot deal with mathematically pure periodicity in

ionospheric structure: a squame-wave ionosphere or a sawtooth ionosphere,

for instance. We can deal with quasi-periodic structure, however, in

addition to completely random structure.

For a given degree of randomness in the structure, the condition

of random phasing in the angular spectrum is more closely approximated

the stronger the scatter, that is the larger the A8 m. The distribution

of A8 within the spatial-frequency spectrum and the distribution of

radio flux within the angular spectrum, however, are not specified, Thus

the power spectrum of spatial structure in the wavefront at the base

plane and the angular power spectrum still are quite arbitrary.
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IIIB STATISTICALDESCRIPTIONOFTHEPOST-SCATTERINGWAVEFRONTANDTHE
MEANINGOFVISIBILITY

Any assumption we might have madeabout either the amplitude or

the phase of the angular spectrum would have reduced the amount of

ionospheric information we can hope to glean. It would take an un-

compromised measurement of both to permit a full description of the

ionospheric structure which produced the spectrum. Having made the

assumption of random phasing, therefore, we cannot hope to reconstruct

fully the phase structure at the base of the scattering layer. A full

reconstruction would be practically impossible anyway because the

phases of the angular spectrum change during subsequent propagation.

The amplitudes of the spectral components do not change, however.

The angular power spectrum contains all of the amplitude and none

of the phase information of the (complex) angular spectrum. Since only

the phases change, it follows that the angular power spectrum remains

constant during propagation from the base of the ionosphere. Booker,

Ratcliffe and Shinn (1950) defined a generalized autocorrelation

function for complex amplitude as follows:

_(_) : W(x) V(x+_) 3-9

v_x) v(x)

They showed that if V(x) denotes complex amplitude across the wave-

front, p(_) is proportional to the Fourier transform of the associated

angulam power spectrum and is therefore invariant during post-scatterin E

propagation. In the case of ionospheric scattering, then, the auto-

correlation function given by 3-9 is the same at the ground as at the
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base of the scattering layer.

Now if V(x) : A(x) eiS(x) represents the complex amplitude of the

wavefront across the ground (i.e., of the Fresnel diffraction pattern on

the ground), then, aside from a constant of proportionality, the voltage

at the output of an antenna located at x is

[ |

V 1 =_e V(x)eJa_(= A(x)cos [at + e(x)]
3-10

b J
Similamly, the voltage at the output of an antenna located at x+_ is

v2 : e V(x+{) e]a : A(x+_) cos [at + 8(x,_)] 3-11

Under conditions of ergodicity, we need not separate averages over t and

over x, and we have

vlv2 : A(x)A(x+_)cos [at , e(x)]cos [at , e(x+_)j

: ½ A(x)A(x+_),cos [e(x+_)-e(X)]+ cos [2at+e(x÷_)+e(x)/_

: ½ A(x)A(x+_) cos [e(x._)-8(x)]

: ½ Re [V_(x)V(x+_)] 3-3.2

But VlV 2 is just the temporal covariance of the antenna voltages_

which is obtained directly from the output of a phase-switch interfero-

meter, and Re[V_(x)V(x+_)] is the spatial autovariance of complex

amplitude. It was shown in section D2 of Chapter II that the temporal

covariance of voltages is equal to [½S 2 + Ra 2] cos 2Xo , where ½S 2 is

2
the power in the nondeviated component of the angular spectrum and a

is the power in the scatter spectrum. It is easily shown also, by
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letting _ go to zero in the derivation of equation 3-12 and then using

Parseval's equality, that ½ Re v_(x)V(x) : p where P is the total power

in the angular spectrum, ½S 2 ÷ o2. Thus, we have

_2
V_(x)V(x+() _ _ + 2Ra 2

V_(x)V(x) S2 + 202

VlV 2

COS 2Xo : --
P

3-i3

where the notation Re is to be understood in accordance with the usual

convention.

The right side of equation 3-13 is simply the (temporal) cross-

correlation coefficient for the antenna voltages, which we denoted by p

in Chapter II. Equation 3-13 shows that p, expressed as a function of

antenna spacing _, is identical to the generalized spatial autocorrelation

function defined by Booker, Ratcliffe, and Shinn. According to the con-

clusions of Booker, Ratcliffe, and Shinn, p(_) measured on the ground-

level diffraction pattern is identical to the autocorrelation function

of the aperture distribution at the base of the ionospheric scattering

layer.

As it stands, p(_) contains the factor cos 2Xo which arises solely

from the anKular position of the source under observation. The position

factor contains no ionospheric information regarding small-scale scatter.

Let us, therefore, concern ourselves with the interferometer fringe

visibility r, defined in section D3b of Chapter II, instead of with p.

Comparison of equations 2-98 and 2-3.00 of that section shows that
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r(_) : p(_)/cos 2X o. Thus we have, from equation 3-13,

S2 + 2R°2 3-14

r(_) = $2+2o2

Upon recalling the definition of the coherence ratio b, equation 3-14

reduces to equation 2-100, Thus

b + R 3-i_'
r(_) - b + 1

Now r(_) is the same at the ground as at the base of the scattering

layer• Since the angular power spectrum is invariant during post-

scattering propagation, the coherence ratio also remains constant.

Therefore R must be identical at all planes too. Now S and o, and

therefore b, are not functions of antenna position and therefore are

independent of _. R, on the other hand, is a measure of the correlation

existing between the scatter-component resultants at the two antennas.

The _-dependence of r(_), therefore, arises through R, which we may

write R(_).

Let us return to consideration of equation 3-6, whose terms are

components of the angular spectrum for a general aperture distribution

V(x) 1 The 0th component, for which all the nm• = 0, is the non-

deviated component of the angular spectrum. If all the Ae m are zero,

corresponding to no phase fluctuations at the base plane, all power is

contained in the nondeviated component, since all the Bessel functions

except that of zero order have zero magnitude for zero argument. The

higher-order waves, then, represent the scatter spectrum. They are

responsible for the phase fluctuations at the base plane and for the

iNote that V(x) is not, in general, identical at the ground and at

the base plane.
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fluctuations in amplitude and phase at lower planes.

The wavefront consists of a plane wave identical to the non-

deviated component, upon which are superposed spatial fluctuations due

to the scattered part of the signal. R(_) represents the spatial auto-

correlation function of the fluctuating part of the wavefront. It was

for this reason that we referred to R in Chapter II as the wavefront

autocorrelation. The visibility r(_) is essentially the spatial auto-

correlation function of the composite wave-field.

IIIC PHYSICAL MEANING OF THE PARAMETERS b AND R

C1 The Coherence Ratio b

The above discussion shows that the interference fringe visibility

Equation 3-15 takes account of the fact that for off-normal incidence,

the observing interfel.ometer has a foreshortened baseline. That is

= d cos s 3-15
o

depends upon the strength of the phase fluctuations at the base of the

ionospheric scattering layer - through b - and on the wavefront auto-

correlation function R(_). We should like to relate b and R to iono-

spheric parameters. First let us relate b more explicity to the

strength of the phase fluctuations. In order to simplify matters, we

shall assume normal incidence of the nondeviated component relative to

the ionosphere and to our antenna baseline at the ground. That is, we

shall assume s° = Xo = 0, which will allow us to interchange p(_) and

.2_d ) and note that
r(_) cos 2Xo = r(_) cos t-y-sin s°
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is a measure of distance along the wavefront, which is equal to distance

along the ground only for normal incidence.

The assumption of normal incidence here is not physically restricting,

being only a convenient simplification of geometry which can be retracted

at will by employing the mathematical relation between p(_) and r(_),

together with equation 3-15. We shall now make a more basic assumption,

akin to and consistent with that of random phasing in the angular spectrum.

The assumption of random phasing requires that the phase of the wavefront

at the base of the scattering layer be trea%ed as a random variable. We

shall need a distribution function with which to describe the wavefront

phase. Following Bramley (1955), let us choose the normal distribution,

which is reasonable on physical grounds.

The normal distribution in this instance is not demanded, a priori,

by the central limit theorem since we know very little about the manner in

which the wavefront phase fluctuations are built up. On the other hand,

it does not seem unlikely that the fluctuations are built up by a large

number of scatterings by independent ion-density irregularities. In this

case, a normal distribution for the wavefront phase may be expected,

whatever the origin and detailed distribution of the irregularities

themselves.

It is to be noted that, while we are assuming a normal distribution

for the wavefront phase at the base plane, we are making no restricting

assumptions about the moments which describe either the first or the

second-order distribution. In particular, we are putting no restrictions

on the variance of the phase nor on its spatial autocorrelation function.
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Weshall, for convenience and without loss of generality, assume that the

average,So,Of the phase is zero.

Bramley (1955) has developed, under the assumptions mentioned above,

the relationship between r(_) and the variance and autocorrelation function

of the phase distribution. The result is given in his equation 28, which

in our notation is

w

r(_) = exp [-8 2 (1-pc)] 3-16

where 82 is the variance of the phase and P8 is its autocorrelation

funct ion.

Now, according to the results of Booke___r,Ratcliffe_ and Shinn (1950),

the Fourier transform of r(_) is the normalized angular power spectrum,

expressed as a function of s = sin m. For small angles we can replace s

with e, and we have

p(_) P e2
= [ I exp [- (l-pc)] exp (-j2_/A) d_ 3-17

where p(e) represents the flux per unit angle in the spectrum, P is the

total flux, and the wavelength A appears explicitly because we choose to

use unit measure rather than wavelength measure. Equation 3-17 can be

written also as

= P -Y --
p(a) _-e f_ eerie (_) exp (-j2we_/A) d_

Upon expansion of the real exponential in the integrand into its

3-18
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series representation, the above becomes

m

[e2p n
p(e) = e I exp(-j2_a_/_) d_ + e

-_ -_ n=l n !

3-19a

The first integral results in a delta function at m=O. Further, for any

physically reasonable autocorrelation function,pe(_) , the infinite series

in the second term is uniformly convergent and therefore may be integrated

term by term. Thus equation 3-19 becomes

p(a) = P e-e2

n:l n! -m
[ps(_)] n exp (-j2_a_/X) d_

3-19b

Now the integral of p(e) over the whole anEular spectrum must equal

P. From the definition of the Dirac delta function, it is easily seen

that the integral of the first term above is P e . The integral of

the second term, then, must be P(l-e-82). Thus, the first ter_ represents

a wave travelling in the original propagation direction and carrying all

of the flux in the event of no phase fluctuations (82 = 0). It is the

nondeviated component of the anEular spectrum. The second term carries

whatever flux is not contained in the nondeviated component, for any

degree of phase fluctuation across the base plane (i.e., for arbitramy

e2). It is the scatter spectrum. The ratio of flux in the two terms,

which is the coherence ratio, is given by

_8 2 _8 2
b = e / (1 - e ) 3-20
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The above expression relating the coherence ratio to the variance of

phase at the base of the scattering layer was derived by Bramley (1955)

for the special case of a Gaussian autocorrelation function. We have

shown here that no such restriction is required

.... ,e Wavefront Autocorrelation Function R(_)

Equation 3-20 relates b to conditions at the base of the scattering

layer. Let us turn now to the relationship between R(_) and conditions

at the base plane. It is easily seen from equation 3-20 that

_8 2 _e 2
b + R : e + R(I - e )

_82
1 - e

b + 1 : i/(1 - e -e2)

and

3-21

3-22

Combination with equation 3-14 produces

_e-[ _e-_
r =e +R(l-e )

Equating 3-16 with 3-23 results in

e -82-7 e-e2pe : e + R(1 - e -e2)

3-23

3-2_

which produces, in view of 3-20

V PB = In (i + b ) 3-25

It is easily shown from equation 3-20 that

82 = in (1 + _---) 3-26
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Hence the autocorrelation function ps(_) of the base-plane phase

distribution is given in terms of the wavefront autocorrelation function

R(_) by

R(_)
in [i + -_- ] 3-27

1

In [l+ F ]

Equation 3-27 can be expressed as

= 1/b
PC = [ n-1 R/b in I'

n=i [i % (R/b)" / n=l_ n-I [_ + (l/b)

n
] 3-2._

For large eohemence ratiob, the series can be approximated by their

initial terms with the result that

P8 % 1 + (l/b) R % R 3-291 + (R/b)

Thus, fop weak scattering, the wavefront autocorrelation function is

nearly identical to the autocorrelation function of the phase distribution

across the base plane. This result was obtained by Bramley (1955) for

the special case of a Gaussian autocorrelation function. Again, the

result holds fop arbitrary autocorrelation function.

The general expression, equation 3-27, shows that for moderate

and strong scattering (ie, for moderate and small coherence ratio), the

phase-distribution autocorrelation function P8 can be obtained only

from a knowledge of both b and R. In Chapter IV, we shall describe

an experiment for determining b and R, based on the development of

Chapter II. Now we must turn to the problem of relating b and R, through

their dependence on 82 and ps, to parameters of ionospheric structure,
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Again we shall base our procedure on the work of Bramley(1955), genera-

lizing where possible.

IIID SCATTERING OF VHF WAVES BY ION-DENSITY IRREGULARITIES

D1 The Variance of Phase at the Base of the Scattering Layer

The operating frequencies in our experiment are well above the gyro,

collision, and plasma frequencies of the auroral E and F layers. Under

these conditions, the refractive index _ encountered by our observing

wave of frequency m/2w in passing through a region which may contain

scattering irregularities can be obtained from

= 1 - (Ne2/me 2) _-_0
o

where N = the electron density in the region, e = the electronic charge,

m = the electronic mass, and _ = the permitivity of free space. In
o

passing through an elemental thickness dz of such a region, the wave

undergoes a phase shift of (2w/l)Ddz, where k is its free-space wave-

length.

Let us suppose now that the region does in fact contain electron-

density irregularities and that the electron density in the dz element

under consideration is N + AN, where N is the average value of N in

the region. The departure of the refractive index in the element from

the average value in the region will be given by

AN r

o
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From equation 3-30, d_IdN is seen to be

2
dB _ -e

dN 2 3-32
2_m¢ _0

o

If the deviation of N in the element is sufficiently small, _ may be

taken as a constant when equations 3-3i and 3-32 are combined, if this

is done, then dB/dN can be placed outside the integral in 3-31, and

obviously(AB/AN) = (dB/dN).

Then we have, from 3-32

2

A_ - -e AN 3-3q
2

2]Jmz
o

The approximation involved in obtaining equation 3-3q- has been

tested for the observing conditions of oum experiment. At the lowest

frequency used in the majority of the observations (68 MHz), the approxi-

mation results in less than a 2% error in h_ even for a 50% modulation in

electron density in the most dense region of the ionosphere. Thus, even

under disturbed conditions in the auroral zone, the approximation is con-

sidered acceptable. Furthermore, at the observing frequencies used, the

ionospheric refractive index may be expected to depart from unity by at

most a few percent. Accordingly,B in equation 3-34 will be taken as

unity.

As a result of the above considerations, it is easily seen that the

magnitude of the excess phase shift (2_/l)ADdz suffered by the wave

because of the deviation in electron density in the dz element is

d{) = _e2AN dz 3-35

me 2_
o
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For purposes of quantitative calculation, it is convenient to express

the constants in equation 3-35 in terms of the plasma frequency and

average electron density of the irregular region. If we denote the

plasma frequency by fo = _o/2_' then dd-_Szbecomes

2

d8 _ _o AN 3-36

dz _ 2 N

Now AN represents the deviation from the mean of the electron

density in an element of depth dz in the irregular region. All the _ther

quantities in 3-36 are constants or relatively very slowly varying

functions of z. Therefore, whatever the statistical distribution of

electron density in the region , the variance (d8/dz) 2 of d0/dz

is obtained from the variance (AN) 2 of the electron density as follows:

(dS"--_ 2 i_ 2_ 2 (AN)2 3-37

x2 g2

The last factor in 3-37, of course, is the mean-square fractional

fluctuation in electron density in the irregular region. Note that we

have not assumed a distribution function for the electron density. It

can be Gaussian as might be expected if the iPreEularities are pro-

duced by a large number of independent ionizing particles. On the other

hand, it can be quite different as might result from some more ordered

process.

As the wave propagates through the irregular region, the excess

elemental phase shift d_z8z) along the z axis (or alon E any
other

representative path of constant x and y) varies in proportion to AN(z).
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d8
The function _E(z) is a particular sample function of the randomprocess

represented by the ensemble of similar functions along all possible

paths of constant x and y. If the total thickness of the irregular

layer is t, then the phase at the intersection of the z axis and the

bottom of the irregular layer is

t

de8 = _Z z) dz 3-38

Hence 8/t is just the finite-interval spatial average of dS/dz.

In sampling theory, 8/t would be called the sample mean of dS/dz.

The integral in 3-38 taken along some other path of constant x and y would,

in general, be different from that taken along the z axis. If we now

inspect the sample mean along the x axis, we obtain 8(x)/t, where 8(x)

is the spatially fluctuating wavefront phase. We can now obtain the

variance of the wavefront phase from the well-known expression for the

variance of the sample mean (Davenport and Root, section 5-3 and section

4-8). Thus

w

_= (d8.2 t
82 2t _E) f (1 -E) pz(T)dT

O

where Pz is the spatial autocorrelation function I of dS/dz and there-

fore of the electron-density variation 2 in the z direction.

3-3g

IIn the present context, the term "autocorrelation function" refers to

what is sometimes (inaccurately) called the "normalized autocorrelation

function." The quantity termed "autocorrelation function" by Davenport

and Root is equal to the product of our autocorPelation function and the

variance and may aptly be called the autovaPiance function. Accordingly

the variance of dS/dz appears explicitly in our equation 3-39, whereas

the corresponding quantity is contained implicitly in Davenport and

Root's equations 4-83 and 5-13. There ape several terms used inter-

changably by various authors to define what we are calling autocorrelation

and to define closely related but not identical quantities. Care must be

exercised to avoid confusion even in the case of ergodio processes, which

we are considering. FoP nonergodic processes, st_]l moz.e _nconsistencies

in nomenclature arise.

2See page 13_ for "the _thematical definition of pz(T).
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In accord with our assumption that the ionosphere's irregulem

structure is not strictly periodic, pz(_) must approach zero for very

large values of T. For a thick layer in which t is very large compared

with the largest value of T for which pz(T) makes a significant contribution

to the integral, equation 3-39 can be replaced by

w

-- (de.2 t
82 = 21: _E) f pz(T) dT

o

D2

3-40

Phase Variance for a Scattering Layer with a Gaussian Structural

Autocomrelation Function

The approximation involved in obtaining equation 3J+O has a somewhat

different meaning depending upon whether the ion-density structure is

strictly random or quasi-periodic in the z direction. In the former

case, the layer simply must be several irregularities thick. In the

latter case, the layer thickness must be great compared with the spatial

wavelength of the basic periodicity and compared with the (larger)

distance over which the periodicity is maintained with essentially

constant phase. In both cases, the layer must be thick compared with

what we might call "the correlation depth" of the scattering layer.

In the random case, the correlation depth gives directly a measure of the

average size of an irregularity. In the quasi-periodic case, the

correlation depth may be many times greater than the size of a single

irregularity, how much greater depending upon how well defined the

periodicity is.

Bramley (1955) treated the random-layer problem in the special case

where the autocorrelation function of the ion-density irregularities in

the z direction is given by the ("denormalized") Gaussian function.
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That is, he treated the case where

(-T2/TO 2PZ = exp ) 3-41

The assumption of the so-called Gaussian autocorrelation function yields

for the integral of equation 3-40

/--WTO

I - 2 err(t/To) 3-42

where erf(t/T o) stands for the error function, which has value zero for

zero arEument and tends to unity as t increases. Thus, for t much larEer

than To, the variance of phase fluctuations at the base of the scatterinE

layer is Eiven by

= (de-2
0 2 V_-To t _-J

In the above, v5 represents

-I
function falls to e

3-43

(Gaussian)

the distance at which the autocorrelation

, thus being a measure of the size of the irregulari-

ties.

D3 Phase Variance for other Autocorrelation Functions

Another autocorrelation function sometimes assumed in scattering

pPoblems is the exponential function, exp (-T/To). For the exponential

case, I is given by T (i - e-t/T°), and the phase variance for large t
o

is

"d8"2 3-43

e2 = 2T ° t t_) (Exponential)

Let us investigate the phase vaPiance fop some other simple auto-

correlation functions. One of the simplest of which we might conceive is

the rectangular function, which has value unity up to T=T ° and value
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zero fop larger T. In this case, equation 3-40 produces

N

3-43

(Rectangular)

The rectangular autocorrelation function produces a result identical in

form to that obtained from the exponential autocorrelation function. It

must be remembered that the correlation depth TO is necessarily defined

differently for the two cases, however. In the rectangular case, TO is

the value of T at which the autocorrelation function drops abruptly from

unity to zero. In the exponential case, t
o

-i
correlation reaches e .

is the value at which the auto-

Another simple autocorrelation function is that which drops linearly

as 1 - T/T°- until T = To and remains at zero for larger values of T.

In this case, equation 3-40 produces

-d8-2 3-43
V= TO t t_) (Linear)

It is easily shown that autocorrelation functions which follow a positive

integral power law of the form 1 - (T/_o)n, so that they drop off more

slowly than the linear function, produce

V 2n t 3-43_ (de. 2
n+l To _) (Integral power

Similarly, positive fractional power law functions of the form

1 - (T/T)I/n which drop off faster than the linear autocorrelation
o

function, yield

8-2- 2 t "dS) 2
= n,--YTo _E

3-43

(Fractional

power)
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All of the autocorrelation functions considered above describe random

scattering layers. Their Fourier transforms, which would represent the

power spectrum of electron-density structure in the z direction, could

be likened to the frequency response characteristics of low-pass filters.

As one last example of a random-layer autocorrelation function, let us

arbitrarily choose one-quainter of an ellipse. That is, let us choose

-i .V/T2 _ T2 0 .< T .<
PZ = TO O" O

p =0 T>T
Z 0

3-44

In this case, we have

T

o -I /T2 2f 3-45I = . T - • dT = _T /4
4 0 0 0
o

and

8-7 n (dS. 2= 3-43

T° t _) (Elliptical)

A glance at the equations 3-43 shows that for all The autocorrelation

functions considered, the variance of phase at the base of the scattering

layer is given by

-- 2

82 = k TO t (d_) 3-46

where t represents the thickness of the scattering layer, T° the scale

of irregularities in the layer, and k is a dimensionless constant deter-

mined by the detailed shape of the autocorrelation function. In most

cases, k will be smaller the more sharply the autocorrelation function

falls off at small values of T, although it depends also on the precise

definition of • .
0
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Let us turn now to an example of a quasi-periodic scatterinE layer.

Such a layer is characterized by an oscillatin E autocorrelation function,

whose oscillations die out rapidly or slowly depending on whether the

periodicity is ill-defined or well-defined. The power spectrum of the

electron-density structure could be likened to the response characteristic

of a bandpass filter, centered on the frequency correspondin E to the quasi-

period. The envelope which defines the decay of the autocorrelation-

function oscillation is the Fourier transform of the band-limiting function.

The shape of the envelope is unimportant for our purpose, the feature of

interest being the oscillatory nature of the autocorrelation function.

Let us examine the case of a Gaussian envelope, so that the auto-

correlation function is Eiven by

Pz = exp(-T2/To 2) cos (T/I z)

In the above autocorrelation function, To

3-47

is aEain the correlation depth.

The size of irTeEularities , however, is on the order of iz, which is

(2_) -I times the quasi-period of the structure.

To evaluate the inteEral in equation 3-40 for the autocorrelation

function of equation 3-47, let us make the followin E changes in

variable_

let x : T/T ° and let g : To/l z

Then the integral becomes

t_To
T° exp (.-x2) cos ExI dx

o

3-48
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Using integral 313-6 of Grobner and Hofreiter (1961), we find that

I _

_T
O

4eg2/4

t i ÷[erf (T 2g-) + err (: +
o o

3-49

The error function is odd_ so the second term in curly brackets is zero.

If the quasi-periodicity of the scattering layer in the z direction

is too well defined, T and g are large, and we must deal with complex
o

arguments in the error functions of the first term in curly brackets.

Further, if To is allowed to become too large, only unrealistically large

values of t safeguard the assumption we made in deriving equation 3-40.

On the other hand, for weakly defined quasi-periodicity, the real parts

of the error-function arguments dominate, and equation 3-49 becomes

approximately

I = _" -g2/4 3-5{ _,-- T e er_,_,T ,
o u

Thus, for sufficiently large t, we obtain

V _ d0% 2

= _ T ° t e -g'_l_ rE) 3-51

Equation 3-51 is identical to equation 3-43 (Gaussian) except for

addition of the factor e -g2/4. The ratio g of correlation depth to

quasi-period is a measure of the degree of periodicity in the scattering

layer structure. For well-defined quasi-periodicity g is large and i
z

represents the size of the dominant structure. For ill-defined quasi-

periodicity g is small. Equation 3-51 approaches identity with

equation 3-43 (Gaussian) as the structure approaches strict randomness_
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in which case T becomes a statistical measure of the structural scale.
o

On the basis of the above discussion for Gaussian quasi-periodicity,

it seems reasonable to generalize equation 3-45 to the following:

: (de) 2
V kGTot

3-52

where G represents a factor which is a measure of the quasi-periodicity

in the scattering layer's structure in the z direction. The factor G is

unity for a strictly random layer, in which case TO is the statistical

scale of irregularities. For weakly defined quasi-periodicity, G departs

from unity and also depends upon the scale of the structure. The

derivation of equation 3-52 does not hold for well-defined quasi-period_-

ci±y.

Substituting from equation 3-37, we have finally for the variance

82 of the phase at the base of a scattering layer whose autocorrelation

function in the z direction may take a variezy of forms

m

-- = (_o)4 (AN) 2 3-53
02 kG 't t (_.)2 _--" --o

The special case of a Gaussian autocorrelation function, considered by

Bramley (1955), is simply a case in which kG = _.

D4 Relation Between the Structural Autocorrelation Function and the

Phase-Distribution Autocorrelation Function

Equation 3-53 relates 82 to ionospheric parameters. We still must

relate the autocorrelation function PsOf the phase at the base of the

scattering layer to ionospheric parameters. Bramley (1955) showed that

for the special case of isotropic irregularities having a Gaussian
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autocorrelation function, P8 also is Gaussian. Although Bramley's
1

development contains an error , we shall show that P8 is identical to

the x-direction autocorrelation function Px of the scattering layer

structume under rather general conditions. Bramley's special-case

result follows correctly as an application of our general one.

First let us note the definition of Pe under our choice of phase

reference, which sets e0 (the mean value of phase at the bottom of the

layer) equal to zero. We have

0e(_) = e(x)e(x+_)/

where the bars denote averages over all values of x.

it is seen that 3-54 can be written as

3-54

From equation 3-38,

t t
i d8 dO

P S(_) = _ ! ! _l(X'Zl) d'_'2 (x+_'z2) dzl dz2

Substituting from equation 3-36, we obtain

3-55

2
t t

oe( ) : z_ I [ ) dZl az2-- 2
e2 e _ o o

3-56

Now let us denote the double integral under the x-averaging bar as J.

The geometry involved in evaluating J is shown in figure ii. The basic

lln going from his equation (13) to equation (14), Bramley incorrectly

replaced a one-dimensional autovariance function with a two-dimensional

autovariance function. His result (under a subsequent approximation)

followed only as a result of the special transformation properties of

the Gaussian function, and his procedure would not lead to a valid result

in more general considerations.



X x+_
--X AXIS

Z
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Fig. ii. Integration geometry for evaluating J.
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coordinate system involved is indicated by the general x and z axes, with

the origin at the upper left corner of the figure. The integrations are

taken through the thickness t of the irregular scattering layer, along

the z paths located at x and x+_. The integrand is the product of AN

at each pair of points zI and z2 located on the two paths. Now let us

denote zI by z and z2 by z+T. Then the double integration can be taken

over z and T as follows:

J = f AN(x,z)AN(x+_,z+T)dz + AN(x,z)AN(x+_,z-T)dz dT

o T 3-57

Consider the first term in equation 3-57. The integrand is the

product formed at the ends of the lower diagonal line in figure 11. The

integral over z is obtained as the line moves down through the scattering

layer. There is no contribution for z less than zero because AN(x,z)

is then zero. There is no contribution for z greater than t-_ because

AN(x+_,z+T) is then zero. The first term, with the limits as shown,

thus contains the total contribution of products between the general

point z on the path at x and points at a distance T lower on the path at

x+_. Similarly, the second term contains the total contribution of

products between the general point z and points a distance T above it.

There is no contribution for z less than T or z greater than t because

in each case one end or the other of the product path (the upper

diagonal line) is outside the irregular layer. Integrating over T from

zero to t collects all the non-zero contributions to conclude the

evaluation of the double integral J.
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A simple origin shift in the second term of equation 3-57 produces

t I t-T t_J : ! o[ dz + ol AN(x,z+T)AN(x+_,z) dz1 dT

_-58

Now it is _, the x-averaEe of J, which we desire for use in equation

3-55. We are free to interchange the order of averaging over x and ..'"

integrating over z and T since the limits and integration variable in

the averaging pmocess are independent of those in the explicit integrations.

We have, therefore,

= f AN(x,z)AN(x÷_,z+T) dz +

o

t-T

f
o

IAN(x,z+t)AN(x+_,z) dz dT

3-59

Aside from a factor of t-t, the inner integrals of equation 3--59

each represent an average over x and z of the product of AN at points

in the xz plane separated by a distance _ in the x direction and T in

the z direction. If the range of z averaging is sufficiently la:_ge,

then, each of the inner integrals is the two-dimensional autovariance

function of the electron density N in the scattering layer. Recalling

that the variance of N in the layer is (AN) 2 and denoting the two-

dimensional spatial autocorrelation function of N by pN(_,T) we find

that J becomes

2
J = (AN)

t _ t

J" 2 (t-t) #N(E;,T) dt : 2t (AN) 2
o o

T (
(i-f)PN _,t) dt

3-60

Let us assume now that PN can be expressed as the product of two

independent hut otherwise arbitra_ one-dimensional autocorrelation

functions px(_) and pz(t), where

px(_ ) = AN(x,z)AN(x+_,z)"

[aN(x,z)] 2
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and

pz(T) - _q_(x,z)AN(x_z+T)

[AN(x,z)] 2

Then, equation 3-60 can be written as

t

J = [2t (AN) 2 f (i _) Pz (_) dT] px(_) 3-61
o

But the integral in equation 3-61 is just that which appears in

equation 3-39. Hence J is given by

= [e2 (AN)2 / (d8)2]__ px(_ ) 3-63

Let us now replace the averaged double integral in equation 3-56 with J

"de.2

from 3-62 and substitute the right-hand side of equation 3-37 for (_) .

Upon doing so, we obtain

pe(_) = Ox(() 3-63

Equation 3-63 states that the spatial autocorrelation function of

the phase distribution at the base of the scattering layer is identical

to the parallel component of the autocorrelation function of structure

in the scattering layer. The prime assumption upon which this simple

result is based is that the ion-density autocorrelation function can be

expressed as the product of mutually independent component functions

in the directions of the coordinate system. The assumption does not

appear very restrictive. We have considered only two dimensions for

simplicity and because the experiment we shall describe in Chapter IV

is not dependent upon conditions in the third dimension (and, of course,

cannot therefore yield information concerning structure in the third
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dimension). Generalization to three dimensions is straight-forward.

Along the route to equation 3-63, we made another incidental

assumption, that of a "sufficiently large" range of z integration. This

assumption means that the layer thickness t is large compared with the

largest value of T for which there is significant contribution to the

inteErals. This is the same assumption made earlier in approximating

equation 3-39 by equation 3-40. Consequently, we could make the same

approximation in equation 3-61. Nothing would be gained however, and

our result would be the same.

The assumption that the layer is thick compared with the z-direction

correlation distance (which we termed the "correlation depth" earlier)

also means that our result does not depend explicitly on the upper limit

placed on the T integration in evaluating J. The careful reader may

have felt uneasy about the choice of t as a limit since there is no a

priori reason for this choice contained in the geometry. The justifi-

cation lies in the thick-layer assumption. Any limit equal to or greater

than t would produce the same result, as it would in equation 3-40, since

the contribution outside the range 0 to t is negligible under the

assumption.

IIIE SUMMARY AND DISCUSSION

E1 Assumptions and Results

Let us summarize the important results of this chapter. First, it

was shown that our assumption in Chapter II that we are dealing with a

randomly phased angular spectrum means that we must exclude certain

simple kinds of ionospheric structure from consideration. In
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particular, we are not here considering refraction in one or a few iono-

spheric lenses or scattering by strictly periodic ionospheric structure.

Although both of these problems can be attacked using the-concept of

the angular spectrum, the assumption of random phasing excludes them.

The simple refraction problem is more conveniently attacked from the

ray point of view anyway. Strict periodicity of ionospheric structure

is not likely in practice, and quasi-periodicity is not excluded by the

assumption of random phasing.

Another assumption, which we made in the present chapter, is that

the scattering layer under consideration is thick compared with the

correlation depth of its structure. For purely random structure the

thick-layer assumption means that the layer is several irregularities

deep. For quasi-periodic structure along the radio line of sight, the

layer must be deep also compared with the distance over which the

quasi-periodicity is sustained with approximately constant phase. Any

given layer thickness therefore sets a limit on the degree to which the

quasi-periodicity can be defined.

A third assumption, also made in the present chapter, is that the

phase at the base of the scattering layer has a normal distribution, such

as might result from a large number of independent scatterings. Under

the second and third assumptions and two others of less physical

importance, the following major results were obtained:

1
82 = in (b + i) (from equation 3-20) 3-6_
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pe(E;)=

in [1 + "----:-" ]
b

in [i+ I]

(from equation 3-27) 3-65

8-_= K T t 2 4fo (&N)2

o c2 f2 _2
(from equation 3-53) 3-66

(where c : velocity of light and K : kG)

pe(O = px(_;) (from equation 3-63) 3-67

m

The first two expressions above relate the variance 82 and autocorrelation

function ps(_) of the phase distribution at the base of the ionospheric

scattering layer to the observational quantities b and R(_). The

second pair of equations relates 62 and ps(_) to ionospheric parameters.

Thus, the set of four equations provides a route to evaluation of

certain ionospheric parameters from interferometric observations at the

ground.

Each of the above four equations either is identical to a correspond-

ing result given by Bramley (1955) for the special case of isotropic

ionospheric structure having a Gaussian autocorrelation function or is

readily reduced thereto. We have no____t,however, assumed isotropy or a

Gaussian autocorrelation function in the present work. In addition,

there is no restriction on the magnitude of the coherence ratio b or

the variance 82 of the base-plane phase. Therefore, the results hold for

strong as well as weak scatter.
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E2 Ionospheric Optical Thickness and Scattering Coefficient

Bramley (1954) pointed out that the analysis contained in his 1955

paper (carried out earlier but delayed relatively in press) afforded a

means of relating the supposed thin diffracting screen of Booker,

Ratciiffe and Shinn (1950) and other workers to a more realistic thick

scattering layer. The terms "strong" and "weak" scatter which we have

used from time to time above are directly applicable only to the

equivalent thin diffracting screen, It is not to be supposed that a

thin layer of the terrestrial ionosphere is capable of strong single

1
scatter of waves in the frequency range we are considering. It

would take a more highly ionized or denser medium to do so. A succession

of weak scatterings in a thick layer, however, can result in a decreased

coherence ratio and produce a resultant field identical to that produced

by a single strong scattering in the equivalent thin screen.

Fejer (1953) specifically analyzed the process of multiple weak

scatterings - ie, scatterings for each of which the Born approximation 2

holds - in a thick irregular medium. In his analysis, Fejer assumed

an isotropic scattering layer with a Gaussian autocorrelation function.

Bramley ([954) demonstrated the equivalence of his own and Fejer's

results for this special case, insofar as the final resultant field is

concerned. Owren (1962) extended Fejer's analysis to a nonisotropic

Gaussian scattering layer and showed that the procedure amounts to a

technique for solving the equation of radiative transfer, treated more

generally by Chandrasekhar (1950).

IA possible exception is the small number of observations at 26.3 MHz.

2Also known as Born's first approximation and stating that the scatter

field is weak compared with the incident field.
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The radiative transfer approach has the great conceptual advantage

of allowing description of the wave-field within the scattering medium

itself. On the other hand, when one can observe only the resultant wave

after emergence from the medium - as is the case in most ionospheric

experiments, including ours - the relative simplicity of Bramley's

approach renders it the more useful. Thus, for the most part, we shall

use Bramley's results as generalized herein.

Based on the demonstrated equivalence of Bramley's and Fejer's

results in the special case of a Gaussian autocorrelation function,

however, we shall freely use the descriptive terminology employed by

Fejer and by 0wren. In particular, for all of our VHF observations

(where the Born approximation may safely be assumed to hold), we shall

take a measurable decrease in coherence ratio to indicate the occurrence

of multiple scatter.

Now Fejer (1953) and Bramiey (1954) agreed that the "effective

depth of scattering" of the thick layer is equal to the variance 82 of

phase at the base of the layer. It is evident from the work of 0wren

(1962) that Fejer's "effective depth of scattering" is identical to the

optical thickness of a purely scattering layer. Thus 82 represents the

optical thickness of our scattering layer. The plausibility of this

result for a general autocorrelation function can be seen by comparing

the integral over angles of our equation 3-19b with the formal

solution of the equation of radiative transfer, as given for instance

1
by Chandmasekhar (1960) in equation 50 of his Chapter I.

iThe source function_ (s') which appears in the integral of Chandrasekhar!

expression is given, for a scattering atmosphere, in his equation 41.

The latter equation involves an integral over all (scatter) angles of

the "phase function" of the scattering process, which is essentially our

angular power spectrum. An arbitrary phase function or angular power

spectrum implies an arbitrary spatial autocorrelation function.
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Equation 3-64 shows that determination of the coherence ratio b

measured at the ground allows direct calculation of the optical thickness

of the ionospheric scattering layer. The combination of equations 3-65

and 3-67 shows that the add_tiQBal measurement of the wavefront auto-

correlation f_nction R(_) at the ground allows calculation of the

spatial autoco_relation function of the scattering layer in the

direction parallel to the interferometer baseline.

Equation 3-66 relates the optical thickness %o other physical

parameters of the scattering layer. The optical thickness of the layer

can be defined as

It-" ! dz 3-68

0

where I is the (linear) scattering coefficient of the layer, defined as

the flux scattered pep unit path length from an incident beam of unit

1
flux density. If the scattering coefficient is constant through the

geomagnetic thickness of the layer, then obviously the optical thickness

is simply the product of the scattering coefficient and the geometric

thickness. Comparison with equation 3-66, then, shows that the

scatteming coefficient of the layer is given by

2 f_
o (AN) 2

I = K t ° cp f2 _ 3-69

1The equivalent quantity in Chandrasekhar's work is <p where _ is the

mass scattering co@fficient and p is the mass density of the scatter-

ing constituent of the atmosphere. (See equation 51 bf his

Chapter I.)
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The assumption that I is constant holds under our tacit assumption

that the scattering layer is statistically uniform (ie, displays spatial

stationarity) in the z direction, which ensures that all the quantities

on the right of equation 3-69 can be treated as constants. Moderate

departures from the assumed condition mean that equation 3-69 must be

interpreted as giving a weighted average scattering coefficient for the

layer.

The scattering coefficient given by equation 3-69 is analagous

to the absorption coefficient of the magneto-ionic theory (Ratcliffe,

1959, section 4.4). The absorption coefficient determines the exponential

rate of attenuation suffered by a wave in traversing an absorbing region.

The scattering coefficient determines the exponential rate of attenuation

suffered by the nondeviated component of a wave in travelling through a

scattering region. In the case of absorption, electromagnetic energy

from the wave-field is transformed into heating of the medium by

collisions, decreasing the strength of the wave. In the scattering

case, energy is transferred from the nondeviated component into the

scatter spectrum, decreasing the coherence ratio while maintaining

constant total wave-field energy.

Reinserting the explicit expression for critical frequency into

equation 3-69 produces

2

e m)2 f-2 (AN)2 3-70I = (4_ce K TO
O

Equation 3-70 shows that the scattering coefficient displays a wavelength-

squared frequency dependence and depends on thestructure of the scatter_Dg
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layem through K, TO and (AN)2. It will be recalled that K is a dimension-

less constant determined by the line-of-sight spatial autocorrelation

function of the layer. It was developed as the product kG, where k

depends upon the overall shape of the autocorrelation function (the

envelope in the quasi-periodic case) and G depends upon the degree to

which quasi-periodicity is developed, reducing to unity for a strictly

random layer. The correlation depth of the layer is given by _o' which

reduces to the statistical scale of irregularities in the line-of-sight

direction for the case of a strictly random layer. The final factor,

of course, gives the strength of the irregularities as the variance

of electron density in the layer. The elements of the first factor have

their usual meaning in rationalized MKS units, so that the factor has

the numerical value _.53 x 1017 meter4/second 2.
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SOME CALCULATIONS PERTAINING TO SIGNAL STATISTICS

la Statistical Independence of Real and Imaginary Components of

the Complex Amplitude of Antenna Voltage

Let v I represent the varying antenna voltage arising from

observation of a randomly phased angular spectrum, and let V1 represent

its complex amplitude. Then the real and imaginary components of VI,

Alc and Als respectively, are given by

vI = Re ] vle _ =Alc cos _t - Als
L J

Now let v I be Fourier analyzed. Thus

N

vI = [ Cn cos (_t +Yln ) = cos _t
n=l

sin _t (1)

N N

(Cn cos Yln)-Sin _t _(CnSinYln*
n=l n=l

(2)

For equations (i) and (2) to hold simultaneously for all t, we must

have

N N
A

= [ c cos and = [ cic - n ¥1n Als - n sin ¥1n
n=l n=l

(3)

Since, in any observational situation, N is restricted to finite

values, we are free to multiply the sums in equations (3) term by

te_m. Thus

N

= [ICmcn cos Ylm sin Yln (_)AlcAls n=

Since the average of any sum of stochastic variables is equal to the



sumof the averages (cf, Munroe, 1951, p. 104-5), we can write the

1
following, where the bars denote averages

N

AlcAls = [ CmC n
m=l

n=l

cos Ylm sin 71n (5)

For a randomly phased angular spectrum, Ylm and _In are independent

and uniformly distributed between zero and 2w. Under these conditions

the average on the right of equation (5) is zero. Thus we have

AIeAIs : 0 (6)

For the same reason, Ale and Als each have zero mean. Therefore

equation (6) is the condition of zero covamiance for the A's. For

gaussian random variables, zero covariance is a necessary and suffi-

cient condition for statistical independence. Hence, Ale and Als are

statistically independent.

lb Covariance of Antenna Voltages

Now let v2 represent the varying output voltage of a neighboring

atenna. Then, from equation (2) above, we obtain

N

VlV'----_=[ cmc n
m=l

n=l

cos (_t + Ylm ) cos (_t + Y2n )
(7)

Iwe make no distinction between ensemble and time averages. This is

justified if we are dealing with ergodic processes. For the gaussian

random process with which we are concerned, ergodicity is insured by

stationarity under very general conditions. Our identification of

time averages with ensemble averages here implies only that we are

assuming stationary conditions.



which expands into

N
_ CmC n [cos Ylm

m=l

n=l

cos Y2n c°s2_t + sin yl m sin Y2n sin2 _t

- (cos Ylm sin Y2n + sin ylm cos Y2n ) sin _t cos _t]

(8)

which reduces to

N

VlV2 : ½Z
m=l

n=l

CmC n (cos Ylm cos Y2n + sin Ylm sin Y2n ) (9)

Under the assumption of random phasing, equation (9) yields the follow-

ing simple expression for the covariance of voltages:

N N

2 \!ic= cn cos (Yln - Y2n ) = cos 2X n (i0)

where Xn = ½ (Yln - Y2n )"

ic The Elements of the Moment Matrix

Let M denote the moment matrix for the four gaussian random vari-

ables Alc, Als , A2c , and A2s. The diagonal elements Pii of M are the

variances_equal for the four vamiables and denoted by c2. The off-diagonal

elements Pi_ are the covariances.

Equation (6) abowe shows that w12 = 0. Similarly, p34 = 0. Further,

the same result would arise upon commutation of the factors on the left

of equation (6). Under the condition of random phasing, we have, further

that

N 2 N 2 '

53 = AlcA2c = Z c cos cos = [ c cos cos (Yln )
n=l n Yln Y2n n Yln - 2Xnn=l

(ii)



N
Or _13 = [

n=l
c_[c°s2 71n cos 2¥n+ cos Yln sin ¥1n sin 2Xn] (12)

N

so "13 = %[ c2 cos
n=l n 2Xn

(13)

In similar fashion, it can be shown that

N

2 COS
g31 = P24 = P42 = %[ Cn 2Xn

n=l

(14)

and

N

-PI4 = -g41 = P23 = P32 = %[ C2n sin 2Xn
n=l

(15)

The above can be summarized by writing the moment matrix as follows:

2

0 02 IJs IJc

M= 2
PC PS o 0

-4s Pc 0 02

where

N
2 2

=½[ Cn
n=l

(16)

(17)

N

pc=%[
n=l

2
cn cos 2X n

(17)

N

_s=½[
n=l

2
cn sin 2X n

(19)



Id The Matrix Elements and the Wavefron% Correlation for a Narrow,

Symmetrical Angular Spectrum

Let the elements of the moment matrix be given by their integral

definitions. Thus,

2
a = f p(e)de

q_

(20)

_c = f p(_) cos 2x d_ (21)

Ps = f p(a) sin 2X dx (22)

where X = (2_d/X) sin a. Now make the following change of variables:

_- e +6
o

(23)

p(a) = F(6) = F(-6) (24)

Then equation (20) can be replaced by

2
o = f r(6) d6

By direct substitution, we have also that

_/c =

OD

f F(6) cos [(2_d/X) sin (6 + e )] d6
__ O

and

Ps = f F(6) sin [2_d/l) sin (6 + a )] d6
__ 0

Under the condition that F is appreciable only for values of 6

(25)

(26)

(27)



which are sufficiently small that cos 6 maybe approximated by unity and

sin 6 by 6, wemay makethe following substitutions:

cos [2wd/%) cos (6+ Co)] = cos [(2_d/l) (6cos eo + sin eo )] (28)

.... + sin _ )] (29)=_n [2_dll) cos (6+ So)] = sin [(2_d/l) (6cos eo o

which yield the following:

-2_d . .2_d

Pc = f F(6) [c°s(--_-- 6c°Seo)C°s[_sineo )

- sin(_ 6cOSeo)Sin(_ine O)] d6
(30)

= __ . ,2_d . ,PS f F(6) [sin( 2 d 6cOS_o)COSt-_-sln_o)

,2_d 2_d .
÷ cost--_-6cOSeo)Sin(-_--sZn_o)] d6

(31)

If F (6) is assumed to be an even function, the terms within the brackets

above which are odd functions of 6 vanish in the integration. Recalling

that X = (2_d/%) sin e, we axe left with

2
o = ]" F(6) d6 (32)

Pc = cos 2Xo f F(6) cos [(2_d/A) 6 cos eo ] d6 (33)

Ps = sin 2Xo f F(6) cos [(2_d/l) 6 cos _o ] d_
(34)



Nowthe wavefront correlation R is defined as

2 2%

(uc + Us)
R-

2
(35)

Substitution of equations (32), (33), and (34) into equation (35)

yields
oo

; F(6) cos [(2_d/A) 6 cosa o] d6
__{O

R = (36)

f F(6) a6

le Covariance of Antenna Voltages in the Presence of a Nondeviated

Component in the Angular Spectrum

If a nondeviated component of amplitude S is added to a randomly

2 _2 = _2 then the
phased angular scattem spectrum of variance o = Ic Is'

antenna voltaEes, vI and v 2,become

vI = S cos (mr + Xo) + Blc cos _t - Bls sin _t
(37)

v2 = S cos (_t - Xo) + B2c cos _t - B2s sin mt
(38)

The covariance of voltages then is given by

S2 cos(_t+Xo)COS(wt-Xo) + BlcB2c cos2_t + BlsB2s sin2_t

o+ S B_c cos(_t+Xo)COS_t - S 6os(at+Xo)Sin_t

o o

+ S B_c cos(_t-Xo)COS_t- S B_s cos(et-Xo)Sin_t

o

+ BIcB2s coset_sinet + BIsB2c cos _/sin_t (39)
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VIV--_ = ½ S 2 [cos 2Xo + cos/et] +_ 1_13+ ½ _2_ (40)

01"

T22 = ½ S2 cos 2Xo + IJc (41)

if The mean Amplitude and Power Products in the Case of Dominance by

the Nondeviated Component

Now designate the amplitudes and phases of the two atenna voltages

by AI, Ql' A2' and @2' so that

v I = A1 cos (ut + 0I) and v2 = A2 cos (_t + 0 2 )
(42)

Comparison of equations (42) with equations (37) and (38) yields, for

S 1
-- >> unity ,
//o

O O O O

AIA2 = S2+ S(¢ cosx ° - B_s sin Xo+ ¢ cOSXo + B_s sin Xo)

2 02

+ ½ (_2c sin2 Xo + _22 c°s2
S

X o

2 020 o

o+ 2B2/B2s cOSXoSinXo+ si_x 0 + c°S2Xo - 2 Bl6BlsCOSXoSinx O)

Yl3 2 . 32

_ BI_2 s sin2Xo (43)

A-_2 = S2 + 2 + Pc(COS2Xo _ sin2Xo ) + 2ps cosx ° sinx °
(44)

iSee also equations 2-68 and 2-69 in Chapter II.



so

A--_2 = S2 + o 2 + _¢ cos 2X ° + Us sin 2Xo (45)

We have also 2

2 2
AIA 2

0 0 0 0

= $4 + 2S 3 [(_ic + B_c), COS XO + (B_s- B_S)sinx o]

+ S2 ( + + + s ) + 4S2( cos Xo-BisB2s X °

/

+ Bls_ c2 3 1.sin Xo cos Xo -Blc_2 s sin Xo cos Xo)
(46)

2 2 = S4 S2
A1A 2 + 4o 2 + 4S 2 [_c(cos 2 Xo - sin 2 Xo) + 2U s sin X° cos Xo]

(47)

2 2 = S4 S2AIA2 + 4°2 + 4S2 (_c cos 2X° + Us sin 2Xo) (48)

2See equations 2-61 and 2-62 in Chapte_ II.


